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December 16, 2024

Abstract

We study how firms’ access to (big) data shapes the transmission of monetary policy
to their capital investment and their exposure to cyclical fluctuations. Using employer-
employee data of job characteristics to quantify firms’ data intensity, we show that data-
intensive firms adjust their capital investment more strongly in response to monetary
policy shocks, particularly to expansionary shocks. Within the set of firms with access
to data, the market shares of firms with superior access to data are more procyclical. To
understand these findings, we develop a tractable theoretical framework in which data
enters investment decisions by favorably affecting a firm’s productivity and reducing
its volatility. Data accumulates endogenously through a data feedback loop, i.e., firms
that produce more accumulate more data. The model predicts that firms with access
to superior data respond more strongly to aggregate fluctuations if and only if the
data feedback loop is sufficiently strong. A strong data feedback loop thus renders the
effectiveness of monetary policy procyclical. The model uncovers potential unintended
consequences of digital markets regulation, such as the EU GDPR, as those policies
weaken the effectiveness of monetary policy.
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1 Introduction
Modern economies increasingly revolve around (big) data, i.e., digitized information about

consumers and market conditions. Utilized as an input of artificial intelligence (AI) pro-

cesses, data enables firms to better forecast components of their future profitability such as

firm-level demand (Bajari et al., 2019; Fildes et al., 2022), the success of individual products

(Munos et al., 2021), employee turnover (Ajit, 2016; Fildes et al., 2022), and the strategic

decisions of rivals (Rani et al., 2023). Data-driven decision making by firms is ubiquitous—

around 40-75% of US manufacturing firms use data for predictive analysis (Brynjolfsson and

McElheran, 2019). Given the prevalence of data-driven decision making and the sizable

economic value of data (Abis and Veldkamp, 2023; Statista, 2024), these technological de-

velopments inevitably affect macroeconomic outcomes. They also create the necessity to pin

down whether and how policymakers should regulate data markets, and how such regulations

may affect macroeconomic dynamics and the efficacy of macroeconomic policy instruments.

In this paper, we focus on one of the most important macroeconomic issues at the business

cycle frequency: monetary policy. In particular, we study how the availability of (big) data

to firms affects the transmission of monetary policy to firms’ investment and firms’ exposure

to cyclical fluctuations. To do so, we proceed in two steps. First, we provide an empirical

measure of firms’ data intensity using employer-employee data on job characteristics, and

relate it to information on firms’ balance sheets and capital investment. This allows us to

estimate how data intensity at the firm level affects the transmission of monetary policy to

firms’ investment and their exposure to the business cycle. Second, we develop a theoretical

framework to shed light on the underlying channels of our empirical results. We then use this

framework to examine potential unintended consequences of data-market regulation policies,

such as the EU GDPR.

To measure firms’ data intensity, we use employment biography data from Revelio Labs,

encompassing the universe of public LinkedIn profiles. This linked employer-employee dataset

includes, for each employment spell, a task-based classification of job roles, which allows us

to identify data-related jobs. For firms in the United States, we then compute the firm-level

count of individuals employed in data-related jobs at the beginning of each year. Our main

proxy of firms’ data utilization is the sample-weighted share of data-related employees in the

total number of employees of a firm, which we refer to as a firm’s data intensity.

As our baseline measure of monetary policy shocks, we use the 30-minute change in

expectations of the Federal Funds rate immediately after each FOMC meeting (the first

component of the policy news shock in Nakamura and Steinsson, 2018). As an alternative,

we use the monetary policy shock series obtained with the median rotation from Jarociński
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and Karadi (2020) which is purged from information effects. Lastly, to estimate how data

intensity affects firms’ cyclicality, we use the “main business cycle shock” from Angeletos

et al. (2020) as our source of cyclical fluctuations.

We find that data-intensive firms respond more strongly to monetary policy shocks, i.e.,

that they increase their capital investment more strongly in response to a monetary loosening.

This holds irrespective of whether we consider firms’ data intensity as a continuous measure

or an indicator variable for nonzero data intensity, reflecting the extensive margin of using

data at all. The heterogeneous effects are largely driven by expansionary monetary policy

shocks. Firms with a one standard deviation higher data intensity adjust their investment

1-2 percent more strongly. We use local projections to make a meaningful comparison with

the average effect of a monetary shock in the data. The stronger investment response by

firms with nonzero data intensity, as opposed to those with zero data intensity, at the time

of the monetary policy shock persists until one year after the shock and matches more than

one-third of the average investment semi-elasticity at the same horizon.

We also investigate the cyclicality of the market shares of firms with vs. without any

data-related employees. On average, the market shares of firms with higher data intensity

are more countercylical. However, within the set of firms with positive data intensity—i.e.,

on the intensive margin—data-intensive firms’ market shares are more procyclical.

To understand these empirical findings, we develop a tractable model of firm investment

that captures key features of the data economy. First, we integrate the empirically docu-

mented facts that firms with superior access to data have a higher expected productivity

(Bajari et al., 2019; Corrado et al., 2022) and a lower variance of productivity (Paine, 2022;

Wu, 2023). Having a lower variance of productivity is beneficial for a firm because this lowers

its cost of capital. Second, data accrues endogenously through a data feedback loop as in

Farboodi and Veldkamp (2022a): firms that produce more accumulate more data. This is

a cornerstone of the data accumulation process and reflects the importance of, e.g., smart

devices and the algorithmic analysis of consumer behavior in the generation of data.

In line with our empirical results, a key prediction of our model is that firms with access

to better data respond more strongly to monetary policy shocks. This is true independent

of the strength of the data feedback loop, and reflected in our empirical finding that data-

intensive firms’ stronger investment response does not depend on whether we measure data

intensity as a continuous or a binary variable. In the model, this is because data-rich firms

face lower idiosyncratic risk, implying that they have a comparatively low cost of capital

since a firm’s cost of capital is increasing in the idiosyncratic uncertainty it faces.1 Thus,

1This is based on the risk-return relationship at the heart of models in finance (Merton, 1973). We
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any change in the aggregate component of a firm’s cost of capital, which is directly affected

by monetary policy, impacts a firm’s total cost of capital more strongly (in percentage terms)

if the firm has access to better data.

The sign of the relationship between firms’ access to data and their responsiveness to

aggregate productivity shocks depends on the strength of the data feedback loop. If the

data feedback loop is absent or relatively weak, firms with superior access to data respond

less strongly to aggregate productivity shocks because the expected productivity of these

firms is higher. Aggregate productivity shocks increase the expected productivity of all

firms by the same absolute amount, which translates into smaller relative increases in the

expected productivity of data-rich firms, thereby triggering a smaller response of these firms.

If the data feedback loop is sufficiently strong, firms with superior access to data respond

more strongly to aggregate productivity shocks. The intuition underlying this result is as

follows: An increase in aggregate productivity raises a firm’s investment and production,

which now—through the data feedback loop—improves said firm’s access to data, inducing

a further increase in its capital investment. This effect is especially strong for data-rich

firms because these firms are larger. This means that changes in their environment trigger a

large response of their investment, which induces them to generate relatively more additional

data. Hence, if the data feedback loop is sufficiently strong, data-rich firms exhibit greater

cyclicality stemming from aggregate productivity shocks.

These theoretical results can be reconciled with our empirical findings: A firm-level data

feedback loop can only be active within firms with non-zero data intensity. By construction,

this implies that the average strength of the data feedback loop is larger among the group

of firms with positive data intensity than among the set of all firms. Together with our

theoretical results, this notion explains why the relationship between a firm’s access to data

and its responsiveness to an aggregate productivity shock is positive within the group of

firms with access to data, while it is negative within the entire set of firms.

Our empirical finding that, within the set of firms with positive data intensity, data-

rich firms have procyclical market shares points to the presence of a relatively strong data

feedback loop that is active within the set of firms with access to data. This renders the effec-

tiveness of monetary policy procyclical, because firms with access to superior data respond

more strongly to monetary policy and attain larger market shares in booms.

The presence of a data feedback loop also matters for the distribution of firms’ sizes.

In general, firms with exogenously superior access to data are larger—this holds true even

when there is no data feedback loop. The positive relationship between a firm’s size and its

obtain a similar result if the cost of capital is fixed, but firms’ managers have mean-variance preferences.

3



access to data becomes more pronounced in the presence of a strong data feedback loop. The

reason is that data-rich firms are larger—when the data feedback loop is active, their larger

size further amplifies the data advantages of such firms, and thereby the size differences.

While the data feedback loop intensifies the positive relationship between exogenous

access to data and firm size, it weakens the negative relationship between a firm’s risk

sensitivity and its size. In the absence of the data feedback loop, firms that are more risk-

sensitive have higher costs of capital and thus invest less. However, the existence of a data

feedback loop means that firms can reduce their uncertainty by growing larger—the resulting

incentives to attain scale weigh particularly strongly for firms that are more risk-sensitive.

Thus, the relationship between a firm’s risk sensitivity and its size becomes positive when

the data feedback effect becomes strong enough. When there is cross-sectional heterogeneity

in firm’s risk sensitivity, the presence of a data feedback loop thus raises the market shares

of firms with high levels of risk sensitivity. Because such firms respond strongly to aggregate

uncertainty shocks, the data feedback loop amplifies the effects of these shocks.

Thereafter, we study the incentives of firms to acquire data from third-party sources, e.g.,

through data intermediaries, which are a key part of digital markets. Expansionary monetary

policy strengthens firms’ incentives to acquire data, which amplifies the effectiveness of

monetary policy. The incentives of firms to acquire data that improves their productivity

distribution are procyclical. By contrast, the incentives of firms to acquire data that enables

them to forecast their idiosyncratic productivity realizations are countercyclical (similar to

the empirical findings in Song and Stern (2024) regarding firm attention to aggregate states).

Our insights shed light on how digital markets regulation affects macroeconomic out-

comes and dynamics. The policy debate surrounding existing pieces of legislation such as

the EU GDPR, the DMA, and the UK DPA has focused on issues of consumer protection,

privacy, and contestability. However, the scope of these regulatory frameworks implies that

these inevitably affect the economy as a whole. Given our evidence that data-rich firms

respond more strongly to monetary policy, curtailing firms’ access to or usage of data could

reduce the potency of monetary policy to stimulate investment.

Related literature: To the best of our knowledge, ours is the first paper to study how

data (with the properties discussed above) shapes cyclical fluctuations and the effectiveness

of monetary policy along the business cycle. Our modeling framework contributes to the

existing literature in various fields by accounting for (i) a data feedback loop, (ii) that more

data raises a firm’s expected productivity and reduces its cost of capital, and (iii) that data

grants firms signals about their idiosyncratic productivity, jointly. In different contexts,
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these features have been studied in isolation in earlier work (see, e.g., Farboodi and Veld-

kamp (2022a), Eeckhout and Veldkamp (2022), and Maćkowiak and Wiederholt (2009)).

What we highlight throughout the paper, however, is that considering them jointly may in

fact intensify or flip earlier findings, depending on the relative strengths of these features.

In doing so, we further contribute to mainly five strands of the literature.

First, our work contributes to the rapidly growing literature on the relevance of digi-

tization and data for macroeconomic outcomes.2 Veldkamp and Chung (2019) provide an

overview of the role of data in the economy. Eeckhout and Veldkamp (2022) show that data

can be a source of market power if firms price risk. Mihet (2024) studies how firms’ access

to data, and the ability to profitably utilize it, shapes competition and generates market

power. The data feedback effect we incorporate builds on the work of Farboodi and Veld-

kamp (2022b), who integrate this channel into a growth model.3 Acemoglu et al. (2022)

show that data markets are not efficient in the presence of data externalities, i.e. when a

user’s data reveals information about others. Asriyan and Kohlhas (2024) document that the

increasing availability of big data to firms improves the accuracy of their expectations and

significantly boosts total factor productivity.4 Our key innovation relative to these papers

is that we jointly investigate the relevant features of the data economy. Moreover, we study

monetary policy and cyclical fluctuations, which preceding papers in this area have not.

Second, our work is related to the macroeconomic literature on research and development

(R&D) and intangible assets. De Ridder (2019) and Chiavari and Goraya (2022) show that

the increasing importance of intangible inputs can account for recent trends such as the rise

of market power, reduced business dynamism, and lower productivity growth.5 Ottonello

and Winberry (2024) study how financial frictions shape the investment decisions of firms

with heterogeneous net worth.6 The key distinction between our paper and this literature is

that data is fundamentally different from intangible assets and R&D — all features of data

that we model are not considered in the work on R&D and intangible assets.

2Several papers have proposed ways of estimating firms’ stock of data. Examples of these are Begenau
et al. (2018), Lashkari et al. (2018), Calderón and Rassier (2022), Mukerji (2022), Galdon-Sanchez et al.
(2022), Corrado et al. (2022), Arvai and Mann (2022), Quan (2022), Babina et al. (2022), Demirer et al.
(2022), Veldkamp (2023), Brynjolfsson et al. (2023), and Wu (2023).

3Wang et al. (2022), Xie and Zhang (2022), Wu and Zhang (2022), He et al. (2023), Ansari (2023), and
Gomes et al. (2023) build on Farboodi and Veldkamp (2022b) and study the role of data in growth models.

4Glocker and Piribauer (2021) empirically document that, because prices are more easily adjustable in
digital markets (Gorodnichenko and Talavera, 2017; Gorodnichenko et al., 2018), increases in the amount of
sales that are conducted through digital retail reduce the real effects of monetary policy.

5Döttling and Ratnovski (2022) and Caggese and Pérez-Orive (2022) empirically document that the
investment of firms with high levels of intangible capital is less responsive to monetary policy.

6Our research is also broadly related to papers which study the macroeconomic effects of automation,
such as Acemoglu and Restrepo (2018) and Jaimovich et al. (2021)
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Third, our paper is related to previous work that studies heterogeneity in the responsive-

ness of firms to monetary policy, namely with respect to a firm’s size (Gertler and Gilchrist,

1994; Kroen et al., 2021), liquidity (Jeenas, 2019), default risk (Bernanke et al., 1999; Ot-

tonello and Winberry, 2020), industry (Durante et al., 2022), price rigidities (Meier and

Reinelt, 2022), and age (Cloyne et al., 2023). Heterogeneity in firms’ access to data is not

considered by any of these papers.

Fourth, our paper relates to the research on the role of uncertainty for firm-level invest-

ment. The seminal contribution of Bloom (2009) documents that increases of uncertainty

reduce firm-level hiring and investment.7 Bloom et al. (2018) establish that firms which

face higher uncertainty are less responsive to shocks such as monetary policy stimuli. This

insight is related to our result that data-rich firms respond more strongly to monetary policy

shocks because they face lower idiosyncratic uncertainty. We build on this line of analysis

by considering firms which are heterogeneous not only in their idiosyncratic uncertainty, but

also in their expected productivity and their ability to predict future outcomes. Further, we

consider firms which can affect their uncertainty through the data feedback loop. In Veld-

kamp (2005), Van Nieuwerburgh and Veldkamp (2006), Ordonez (2013), and Fajgelbaum

et al. (2017), there is a data feedback loop at the aggregate level, which amplifies business

cycles by creating countercyclical movements in aggregate uncertainty. Going beyond this,

we study how a firm-level data feedback loop shapes the propagation of cyclical fluctuations.

Fifth, our work is related to the literature on incomplete information (Lucas, 1972) and

rational inattention (pioneered by Sims (2003)). However, there are substantial differences

in focus and setup: Generally speaking, papers in the rational inattention literature establish

how agents optimally allocate their limited attention and how this can account for inertia in

macroeconomic outcomes. For example, Ottonello and Winberry (2020) study firm hetero-

geneity in attention to macroeconomic state variables. By contrast, we study how exogenous

heterogeneity in firms’ access to data and the data feedback loop shape cyclical fluctuations

and the effectiveness of monetary policy along the business cycle. Moreover, most papers

in the rational inattention literature consider models without capital.8 In terms of setup,

our analysis in section 5 is related to Charoenwong et al. (2022) and Gondhi (2023), who

consider models in which firms receive signals about their idiosyncratic productivity draws.

However, these papers do not consider the effects of monetary policy, changes in the first

moment of a firm’s productivity distribution, or the data feedback loop.

7Bachmann et al. (2013) show that increases in uncertainty reduce output. Kumar et al. (2022) provide
causal evidence that increases in uncertainty lead firms to reduce employment, investment, and sales.

8Exceptions are Maćkowiak and Wiederholt (2015), Zorn (2020), Gondhi (2023), and Maćkowiak and
Wiederholt (2023). Benhabib et al. (2019) study how financial markets interpret signals of inattentive firms.
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2 Empirical Evidence

In this section, we start out by showing empirically that data-intensive firms react more

strongly to monetary policy shocks, and that such heterogeneous responses cannot be ex-

plained by other transmission mechanisms related to firms’ balance sheets.

2.1 Data

To capture firms’ data intensity, we use employment biography data from Revelio Labs,

encompassing the universe of public LinkedIn profiles, with nearly 500 million workers and

approximately 1.8 billion employment spells. This linked employer-employee dataset in-

cludes start and end dates for each employment spell, along with a task-based classification

of job roles. The job taxonomy identifies activities associated with each job title by com-

paring descriptions from resumes and online profiles against responsibilities listed in online

job postings.9 Initially, the algorithm categorizes 1,500 job roles, which are successively ag-

gregated using a clustering algorithm. We use the taxonomy at the hierarchical level where

150 distinct roles are defined. The job titles we classify as data-related are data analyst,

data engineer, data scientist, and database administrator (for our baseline measure of data

intensity at the firm level).10 Our dataset is restricted to job spells from the United States,

where we compute the firm-level count of individuals employed in data-related roles at the

beginning of each year. We use sampling weights, provided by Revelio Labs, to account for

the potentially non-representative nature of our sample for certain job roles and locations.11

We then merge this (sample-weighted) variable with Compustat using CIK identifiers. Our

primary measure of data intensity normalizes the number of workers in data-related roles

by firm-level employment as recorded in Compustat. As a control, we similarly construct a

measure for the intensity of IT-related workers.12

Furthermore, we use as our baseline monetary policy shock the 30-minute change in

expectations of the Federal Funds rate immediately after each FOMC meeting (the first

component of the policy news shock in Nakamura and Steinsson, 2018). As an alternative,

we use the monetary policy shock purged from information effects obtained with the median

rotation from Jarociński and Karadi (2020). To yield annual frequencies, as in our firm-level

9For further detail, see www.reveliolabs.com.
10We do not use the O-NET classification, as it lacks specific categories corresponding to these roles.
11All results are robust to using the unweighted measures.
12The corresponding job roles are application engineer, application support, devops engineer, information

security, information specialist, infrastructure engineer, IT analyst, IT project manager, IT specialist, network
specialist, software developer, software engineer, solutions specialist, systems engineer, technical support,
technical support engineer, technology analyst, technology lead, UX designer, and web developer.
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Table 1: Summary Statistics

Variable Mean Std. dev. Min Max N
ln(Capital expenditure) 2.650 3.029 -6.908 11.061 57,522
ln(Employment) 4.834 2.391 0.000 12.374 57,522
Market share 0.030 0.087 0.000 0.996 34,047
Data intensity 0.011 0.030 0.000 1.306 57,522
Data intensity (alt) 0.020 0.043 0.000 1.583 57,522
IT employment share 0.111 0.132 0.000 1.000 57,522
MP shock -0.003 0.008 -0.023 0.012 57,522
MP shock (alt) -0.003 0.011 -0.033 0.024 57,522
Y shock -0.117 0.427 -1.112 0.487 39,232
I shock -0.044 0.507 -1.288 0.564 39,232

The sample period is 2004 to 2023 for all variables, except for the business-cycle shocks (1998 to 2017).
Capital expenditureft and Employmentft are, respectively, capital expenditure and the number of employees
at firm f in year t. Market shareft is firm f ’s revenues divided by gross output in current prices in firm
f ’s (four-digit NAICS) industry in year t. Data intensityft−1 is the sample-weighted share of data-related
employees (with job roles classified as “data analyst,” “data engineer,” “data scientist,” or ´´database
administrator”) at firm f at the end of year t− 1. Data intensity (alt)ft−1 also includes job roles classified
as “business analyst” or “information specialist” in this definition, and IT employment shareft−1 captures
the share of IT-related employees. MP shock t is the 30-minute change in expectations of the Federal Funds
rate immediately after each FOMC meeting (the first component of the policy news shock in Nakamura
and Steinsson, 2018). MP shock (alt)t is the monetary policy shock obtained with the median rotation
from Jarociński and Karadi (2020). Y shock t and I shock t are, respectively, the real GDP per capita and
investment shock series (available only from 1998 to 2017) from Angeletos et al. (2020).

data, we compute the average for each (quarterly) monetary policy shock in a given year.

In additional analyses, we also consider firms’ market shares in response to business cycle

shocks. For the former, we use the ratio of a given firm’s revenues divided by gross output

in current prices at the industry level. To this end, we use annual data from the Bureau of

Labor Statistics (Download: bls.gov). In case of missing information, we complement these

data with the equivalent statistics from the The Bureau of Economic Analysis (Download:

apps.bea.gov, Series UGO305-A), which we map into NAICS-4 industry codes using the BEA

Industry and Commodity Codes and NAICS Concordance Table. Lastly, to capture business

cycle shocks, we use the two shock series that explain most of the variation in real GDP per

capita and investment, respectively, (available only until 2017) from Angeletos et al. (2020).

Our final sample period covers 20 years, from 2004 to 2023 when considering monetary

policy shocks and from 1998 to 2017 when considering business cycle shocks. Summary

statistics for all relevant variables are presented in Table 1.
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Table 2: Summary Statistics—By Data Intensity

Panel A: > 0 Data intensity Mean Std. dev. Min Max N
Leverage 0.267 0.217 0.000 1.000 29,867
Cash/Assets 0.181 0.210 0.000 0.993 30,006
Sales-growth volatility 0.179 0.194 0.000 2.336 20,566
ln(Capital expenditure) 3.818 2.517 -6.908 11.061 30,120
ln(Employment) 6.486 1.629 0.000 12.374 30,120
Market share 0.049 0.108 0.000 0.996 17,444
IT employment share 0.135 0.120 0.000 0.753 30,120
Panel B: 0 Data intensity
Leverage 0.211 0.219 0.000 1.000 26,971
Cash/Assets 0.270 0.293 0.000 1.000 27,329
Sales Growth Volatility 0.337 0.389 0.000 2.828 18,890
ln(Capital expenditure) 1.366 3.024 -6.908 10.808 27,402
ln(Employment) 3.018 1.670 0.000 9.365 27,402
Market share 0.011 0.048 0.000 0.918 16,603
IT employment share 0.084 0.139 0.000 1.000 27,402

The sample period is 2004 to 2023. Summary statistics in the top panel refer to firm-year observations with
nonzero values for Data intensityft−1, and those in the bottom panel refer to firm-year observations for which
Data intensityft−1 = 0, where Data intensityft−1 is the sample-weighted share of data-related employees
(with job roles classified as “data analyst,” “data engineer,” “data scientist,” or ´´database administrator”)
at firm f at the end of year t− 1. Leverageft, Cash/Assetsft, and Sales-growth volatilityft are, respectively,
firm f ’s leverage in year t, cash-to-assets ratio in year t, and six-year sales-growth volatility (measured from
year t to t + 5). Capital expenditureft and Employmentft are, respectively, capital expenditure and the
number of employees at firm f in year t. Market shareft is firm f ’s revenues divided by gross output in
current prices in firm f ’s (four-digit NAICS) industry in year t. IT employment shareft−1 captures the share
of IT-related employees.

2.2 Empirical Strategy

Before we turn to estimating firms’ investment response to monetary policy shocks as a

function of their data intensity, we consider summary statistics for two broad categories

of firm-year observations, those with nonzero vs. zero data intensity.13 As Table 2 shows,

nonzero data intensity (Panel A) is associated with higher leverage and, possibly as a con-

sequence, less reliance on cash, as well as less volatile sales growth than zero data intensity

(Panel B).

Indeed, these three summary statistics are consistent with our hypothesized mechanism,

which we will formalize in our model, that superior access to data enables firms to reduce

13Note that Data intensity > 0ft corresponds to the mean value of said variable over time for almost
half of the firms as they do not exhibit any time variation in whether or not they have a nonzero share of
data-related employees.
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Table 3: Firms’ Data Intensity, Financial Constraints, and Volatility

Leverage Cash/Assets Sales-growth volatility
(1) (2) (3)

Data intensity > 0 0.015*** -0.013** -0.023***
(0.005) (0.005) (0.008)

ln(Employmentt−1) 0.008*** -0.016*** -0.031***
(0.001) (0.001) (0.002)

IT employment sharet−1 -0.062*** 0.067*** -0.057**
(0.019) (0.022) (0.027)

Industry-year FE Y Y Y
N 55,304 55,793 38,338

The level of observation is the firm-year level ft. The dependent variable in column 1 is firm f ’s leverage in
year t. The dependent variable in column 2 is firm f ’s cash-to-assets ratio in year t. The dependent variable
in column 3 is firm f ’s six-year sales-growth volatility (measured from year t to t+5). Data intensity > 0ft−1

is an indicator for whether the sample-weighted share of data-related employees (with job roles classified as
“data analyst,” “data engineer,” “data scientist,” or ´´database administrator”) at firm f at the end of year
t − 1 is nonzero. Employmentft−1 is the number of employees at firm f in year t − 1, and IT employment
shareft−1 is the share of IT-related employees at firm f in the same year. Industry by year fixed effects are
based on four-digit NAICS codes. Robust standard errors (clustered at the firm level) are in parentheses.

the variance of their productivity—i.e., reduce their volatility—which in turn lowers their

cost of capital. The latter implies the ability to attain external financing, as reflected by

higher leverage. These findings hold up in firm-year-level regressions in Table 3 where we

can additionally control for, e.g., firm size by including employment and for time-varying

unobserved heterogeneity at the industry level by including industry by year fixed effects.

To gauge these firms’ heterogeneous investment responses to monetary policy shocks, we

estimate the following specification at the firm-year level ft:

ln(Capital expenditureft) = βData intensityft−1 ×MP shock t + γOtherft−1 ×MP shock t

+δXft−1 + µf + θi(f)t + ϵft, (1)

where Capital expenditureft is firm f ’s capital expenditure in year t, Data intensityft−1 is

the sample-weighted share of data-related employees at firm f at the end of year t − 1,

MP shock t is a monetary policy shock in year t, and Otherft−1 denotes a vector of firm-

related exposure variables, all measured in year t − 1, that may give rise to alternative

monetary policy transmission channels, namely firm f ’s leverage, age, cash-to-assets ratio,

and intangible-asset ratio. Xft−1 are time-varying firm-level control variables, namely firm

f ’s logged number of employees and its IT employment share, both measured in year t−1. µf
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Table 4: Amplification of Investment Sensitivity

ln(Capital expenditure)
MP shock NS NS JK NS
Data intensity Share data-related employees +Analysts

(1) (2) (3) (4)

Data intensity × MP shock 65.227*** 59.546** 24.199 50.101***
(25.204) (24.774) (15.052) (15.062)

Data intensity 0.487 0.431 0.336 0.226
(0.379) (0.369) (0.356) (0.373)

ln(Employmentt−1) 0.450*** 0.454*** 0.451*** 0.454***
(0.025) (0.025) (0.025) (0.025)

IT employment sharet−1 0.049 0.045 0.042 0.044
(0.156) (0.156) (0.156) (0.155)

Other transmission interactions N Y Y Y
Firm FE Y Y Y Y
Industry-year FE Y Y Y Y

N 55,309 55,309 55,309 55,309

The level of observation is the firm-year level ft. The dependent variable is the natural logarithm of firm
f ’s capital expenditure in year t. In the first three columns, Data intensityft−1 is the sample-weighted share
of data-related employees (with job roles classified as “data analyst,” “data engineer,” “data scientist,” or
´´database administrator”) at firm f at the end of year t−1. In column 4, we also include job roles classified
as “business analyst” or “information specialist” in this definition. In columns 1, 2, and 4, MP shock t is the
30-minute change in expectations of the Federal Funds rate immediately after each FOMC meeting (the first
component of the policy news shock in Nakamura and Steinsson, 2018), while in column 3 it is the monetary
policy shock obtained with the median rotation from Jarociński and Karadi (2020). Employmentft−1 is
the number of employees at firm f in year t − 1, and IT employment shareft−1 is the share of IT-related
employees at firm f in the same year. In columns 2 to 4, we control for alternative monetary policy
transmission mechanisms by including firm f ’s leverage, age, cash-to-assets ratio, and intangible-asset ratio
in year t−1 as well as their interaction with MP shock t. Industry by year fixed effects are based on four-digit
NAICS codes. Robust standard errors (clustered at the firm level) are in parentheses.

and θi(f)t) denote, respectively, firm and industry (i of firm f) by year fixed effects. Standard

errors are clustered at the firm level.

Our coefficient of interest, β, captures to what extent data-intensive firms respond dif-

ferently to monetary policy in terms of their investment. While we do control for firm fixed

effects, which absorb time-invariant unobserved heterogeneity at the firm level, alongside

industry by year fixed effects, capturing time-varying unobserved heterogeneity at the in-

dustry level, a lingering concern is that β captures the reaction of firms with balance sheet

characteristics that are highly correlated with the share of data-related employees and that

simultaneously govern firms’ investment response. To control for this possibility, we include

a host of firm-related exposure variables interacted with the monetary policy shock to cap-

ture alternative transmission channels. In particular, we use firms’ leverage, following the

11



idea that financial frictions determine the investment channel of monetary policy (Ottonello

and Winberry, 2020). In addition, we also include interaction terms with firms’ age and

cash-to-assets ratio as proxies for the exposure of their external financing to asset value fluc-

tuations (Cloyne et al., 2019). Controlling for firms’ leverage and cash-to-assets ratio is also

warranted given their correlation with data intensity as indicated in Table 3. Finally, we

also include firms’ intangible-asset ratio as data can be viewed as a subcategory of intangible

assets.

Table 4 presents the results from estimating (1). As can be seen in column 1, more data-

intensive firms react more strongly to monetary policy shocks in terms of their investment

response. Our estimate of β is virtually invariant to controlling for the above-discussed

alternative transmission channels based on firms’ balance sheet characteristics. Our results

are also robust to altering our monetary policy shock series in column 3, where we use the

median rotation from Jarociński and Karadi (2020) and the coefficient still has a p-value

of less than 0.11, and to extending the definition of data-related employees in column 4,

where we also take into account job roles classified as “business analyst” or “information

specialist.” Using the estimates in columns 2 and 3, a one-standard-deviation increase in

Data intensityft−1 is associated with an investment sensitivity to monetary policy ranging

from 0.03× 24.199 = 0.73 (column 3) to 0.03× 65.227 = 1.96 (column 2). This implies that

an (expansionary) monetary policy shock of 0.01, which corresponds to approximately one

standard deviation, would lead to a sizable increase in investment of 0.73% to 1.96%.

In Table 5, we explore to what extent the extensive margin of having any data-related

workers can explain the heterogeneous investment responses, which we capture with an

indicator variable (Data intensity > 0ft−1) for whether the sample-weighted share of data-

related employees at firm f at the end of year t− 1 is nonzero (as in Tables 2 and 3 above).

Our estimate in column 1 implies that these firms exhibit a stronger investment response

to monetary policy. As before, controlling for alternative transmission channels in column 2

affects this estimate only marginally.

In columns 3 and 4, we test whether this investment response is asymmetric in the sense

that it pertains to expansionary (positive), rather than contractionary, monetary policy

shocks. The coefficient on the triple interaction is positive and significant, indicating that

firms with any nonzero share of data-related employees respond more strongly to expan-

sionary monetary policy than to contractionary monetary policy (captured by the simple

interaction term Data intensity > 0ft−1 × MP shock t).

Figure 1 shows results from local projections, with the purpose of assessing (i) how long-

lived the heterogeneous investment responses are and (ii) how they compare to the average

12



Figure 1: Longer-Run Amplification and Average Effect of a Monetary Shock
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The figure shows results from local projections, obtained by regressing h-step-ahead values of the natural
logarithm of firm f ’s capital expenditure in year t on Data intensity > 0ft−1, which is an indicator for
whether the sample-weighted share of data-related employees (with job roles classified as “data analyst,”
“data engineer,” “data scientist,” or ´´database administrator”) at firm f at the end of year t − 1 is
nonzero, interacted with MP shock t, which is the 30-minute change in expectations of the Federal Funds
rate immediately after each FOMC meeting (the first component of the policy news shock in Nakamura and
Steinsson, 2018). The top panel plots the estimated coefficients on this interaction term. The bottom panel
shows the baseline coefficients on the monetary policy shock, MP shock t. All regressions control for firm
fixed effects, the first lag of capital expenditure, four lags of real GDP growth, the first lags of the inflation
and unemployment rate (all aggregate data are obtained from FRED and transformed into growth rates),
Data intensity > 0ft−1, the natural logarithm of Employmentft−1, which is the number of employees at
firm f in year t − 1, IT employment shareft−1, which is the share of IT-related employees at firm f in the
same year, and also for alternative monetary policy transmission mechanisms by including firm f ’s leverage,
age, cash-to-assets ratio, and intangible-asset ratio in year t− 1 as well as their interaction with MP shock t.
The plots show point estimates alongside 90% and 95% confidence bands, obtained from standard errors
clustered at the firm level. 13



Table 5: Extensive Margin of Data Intensity and Asymmetric Response to Monetary Policy

ln(Capital expenditure)
MP shock NS NS NS NS

(1) (2) (3) (4)

Data intensity > 0 × MP shock 6.606*** 5.865*** 4.992*** 4.301***
(1.256) (1.292) (1.624) (1.639)

Data intensity > 0 0.137*** 0.134*** 0.127*** 0.124***
(0.028) (0.028) (0.031) (0.031)

Data intensity > 0 × MP shock × MP shock > 0 14.679*** 14.592***
(4.204) (4.186)

Data intensity > 0 × MP shock > 0 -0.036* -0.036*
(0.020) (0.020)

ln(Employmentt−1) 0.437*** 0.440*** 0.437*** 0.440***
(0.025) (0.025) (0.025) (0.025)

IT employment sharet−1 0.045 0.041 0.043 0.039
(0.155) (0.155) (0.156) (0.155)

Other transmission interactions N Y N Y
Firm FE Y Y Y Y
Industry-year FE Y Y Y Y

N 55,309 55,309 55,309 55,309

The level of observation is the firm-year level ft. The dependent variable is the natural logarithm of firm f ’s
capital expenditure in year t. Data intensity > 0ft−1 is an indicator for whether the sample-weighted share
of data-related employees (with job roles classified as “data analyst,” “data engineer,” “data scientist,” or
´´database administrator”) at firm f at the end of year t− 1 is nonzero. MP shock t is the 30-minute change
in expectations of the Federal Funds rate immediately after each FOMC meeting (the first component
of the policy news shock in Nakamura and Steinsson, 2018), and MP shock > 0t is an indicator for an
expansionary monetary policy shock. Employmentft−1 is the number of employees at firm f in year t − 1,
and IT employment shareft−1 is the share of IT-related employees at firm f in the same year. In columns
2 and 4, we control for alternative monetary policy transmission mechanisms by including firm f ’s leverage,
age, cash-to-assets ratio, and intangible-asset ratio in year t− 1 as well as their interaction with MP shock t.
Industry by year fixed effects are based on four-digit NAICS codes. Robust standard errors (clustered at the
firm level) are in parentheses.
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Table 6: Cyclical Fluctuations of Data-Intensive Firms

Market share
Sample All All Data intensity > 0 All All Data intensity > 0
BC shock Y Y Y Y I I I I

(1) (2) (3) (4) (5) (6) (7) (8)

Data intensity > 0 × BC shock -0.003*** -0.003*** -0.002*** -0.002***
(0.001) (0.001) (0.001) (0.001)

Data intensity > 0 -0.001 -0.001 -0.001 -0.001
(0.001) (0.001) (0.001) (0.001)

Data intensity × BC shock 0.019** 0.022** 0.018* 0.021**
(0.010) (0.010) (0.009) (0.009)

Data intensity 0.022 0.017 0.019 0.014
(0.017) (0.016) (0.017) (0.016)

ln(Employmentt−1) 0.005*** 0.005*** 0.014*** 0.013*** 0.005*** 0.005*** 0.014*** 0.013***
(0.001) (0.001) (0.002) (0.002) (0.001) (0.001) (0.002) (0.002)

IT employment sharet−1 -0.001 -0.001 -0.039** -0.038** -0.001 -0.001 -0.039** -0.038**
(0.003) (0.003) (0.015) (0.015) (0.003) (0.003) (0.015) (0.015)

Firm-level controls N Y N Y N Y N Y
Firm FE Y Y Y Y Y Y Y Y
Industry-year FE Y Y Y Y Y Y Y Y

N 33,305 33,305 15,626 15,626 33,305 33,305 15,626 15,626

The level of observation is the firm-year level ft. The dependent variable is firm f ’s market share in year t. Data intensity > 0ft−1 is an indicator for
whether the sample-weighted share of data-related employees, Data intensityft−1, (with job roles classified as “data analyst,” “data engineer,” “data
scientist,” or ´´database administrator”) at firm f at the end of year t− 1 is nonzero. The sample is limited to firm-year observations with nonzero
values for Data intensityft−1 in columns 3, 4, 7, and 8. BC shock t is the real GDP per capita shock series (in columns 1 to 4) or the investment
shock series (in columns 5 to 8) from Angeletos et al. (2020). Employmentft−1 is the number of employees at firm f in year t− 1, and IT employment
shareft−1 is the share of IT-related employees at firm f in the same year. In columns 2, 4, 6, and 8 we control for firm f ’s leverage, age, cash-to-assets
ratio, and intangible-asset ratio in year t− 1. Industry by year fixed effects are based on four-digit NAICS codes. Robust standard errors (clustered
at the firm level) are in parentheses.
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investment effect of a monetary shock. To estimate the latter, we estimate a variant that

reflects our main regression specification (1), but without year fixed effects (as in Ottonello

and Winberry, 2020). The top panel demonstrates that the relatively stronger investment

response by firms with nonzero data intensity at the time of the monetary policy shock

is realistically short-lived and persists until one year after the shock.14 The bottom panel

shows the average investment effect of a monetary shock, which is longer-lived but larger

than the relative effect for data-intensive firms only one to two years after the shock. The

estimated interaction effects therefore imply an economically meaningful degree of hetero-

geneity, matching at least one-third of the average investment semi-elasticity (one year after

the monetary policy shock).

Having established that data-intensive firms react more strongly to monetary policy

shocks, we now turn to their cyclical fluctuations as measured by their market shares. In

Table 6, we test the cyclical fluctuations of firms with any or no data-related employees

at the relevant time. For this purpose, we consider the “main business cycle shock” from

Angeletos et al. (2020) in columns 1 and 2, as well as investment shocks in columns 5 and

6. Irrespective of whether we include firm-level controls (which we do in columns 2 and

6, reflecting the alternative monetary policy transmission channels considered above), data-

intensive firms exhibit weaker cyclical fluctuations throughout. This reflects the extensive

margin of data intensity.

Turning to the intensive margin of data intensity, however, we find that data-intensive

firms’ market shares are actually procyclical. That is, conditional on nonzero data intensity,

the coefficient of the interaction between the continuous variable Data intensityft−1 and the

respective business-cycle shock, is positive and significant. This holds true, with very similar

magnitudes, for real GDP per capita (columns 3 and 4) and investment shocks (columns 7

and 8).

We next interpret these findings through the lens of a model with firms that are hetero-

geneous in their data-driven ability to predict future outcomes.

3 Theoretical Framework
In this section, we present our theoretical model of firm investment and data. The model is

kept deliberately stylized in certain parts to focus on the various new features of the data

economy.

14These estimates are robust to including industry by year fixed effects, as we do in our baseline regression,
in Figure A.1 of the Appendix.
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Output, productivity, and data

There is a unit mass of infinitely-lived firms, indexed by i ∈ [0, 1], and time is discrete and

denoted by t = 1, 2, ...,∞. Each firm produces according to its production function

Yi,t = Ai,tK
α
i,t, (2)

where Yi,t denotes the output produced by firm i, Ai,t its productivity, and Ki,t its capital

stock. Firms choose their capital before observing their productivity. That is, firm i chooses

its capital stock Ki,t+1 in t before observing Ai,t+1. The parameter α ∈ (0, 1) is identical

across firms.15 Capital is inelastically supplied.

To incorporate the manifold economic benefits generated by data, we suppose that supe-

rior access to data generates value for firms in three different ways, namely by (1) increasing

the firm’s expected productivity, (2) by reducing the variance of its productivity, and (3) by

granting firms more precise signals about their future productivity realizations. The first two

channels imply that data favorably affects a firm’s productivity distribution, while the third

channel captures the idea that data allows firms to better predict their future productivity

without affecting its distribution.

Throughout the analysis, a firm’s data is captured by the objects (σi,t, ξi,t). The object

σi,t governs the relationship between a firm’s access to data and it’s productivity distribution.

This relationship takes the following functional form:

E[Ai,t|σi,t] = Āt − κeσi,t ; V AR[Ai,t|σi,t] = V̄t + κvσi,t. (3)

The parameters κe ≥ 0 and κv ≥ 0 capture the effects of data σi,t on the expected produc-

tivity, E[Ai,t|σi,t], and its variance, V AR[Ai,t|σi,t], respectively. Firms with a lower σi,t have

access to superior data. Table 3 shows that firms using data indeed face lower volatility.

When κv is high, relative to κe, the primary economic value of access to better data is the

associated reduction in the variance of the firm’s productivity.

We model the third channel by specifying that any firm also receives a signal about its

productivity: Âi,t = Ai,t + ei,t, with ei,t ∼ N(0, ξ2i,t). This third channel how data affects

firms is thus captured by differences in the noise variance ξ2i,t.

To ease exposition, we separate the analysis of the different channels. In Section 4, we

focus on the effect of data via favorably affecting a firm’s productivity distribution (i.e., we

15Our model can be easily augmented to include labor, provided it is hired on the spot market. Then, by
plugging in the optimal labor choices, the parameter α can be understood as a combination of the parameters
on the labor and capital inputs.
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consider σi,t ∈ R≥0 and set ξi,t → ∞). In section 5, we focus on the effect of data by allowing

firms to predict their future productivities more accurately (i.e., we consider ξi,t ∈ R≥0).

Microfoundation: While we focus on the implications of data access on firm investment

generally, we now provide a potential microfoundation for our assumptions on how data

shapes a firm’s future productivity and its expectations thereof using a particular example.

Based on Farboodi and Veldkamp (2022b), we specify that a firm’s productivity Ai,t depends

on (i) the aggregate productivity level Āt, (ii) the firm’s idiosyncratic productivity ϵi,t, and

(iii) how well the firm matches a payoff relevant state, which we call θi,t. The payoff-relevant

state θi,t can be understood as the optimal product variety or the ideal form of marketing

in a given period, which the firm wishes to mirror by its choice of marketing/production

approach ai,t. Reflecting these three features, a firm’s productivity takes the following form:

Ai,t = Āt − d(ai,t, θi,t) + ϵi,t, (4)

where d(ai,t, θi,t) is some distance metric and θi,t and ϵi,t are random variables that are

independently drawn according to the distributions Fθ and Fϵ.

Firms with access to data receive signals about these random variables before choosing

their capital stock. We assume that these signals are unbiased, and that σ2
i,t is the variance

of the signal a firm obtains about θi,t and ξ2,i,t is the variance of the signal a firm obtains

about ϵi,t. A firm has access to better data about one of these random variables if and only

if this firm’s signal about this random variable has lower variance, i.e., a higher precision.

Within this example, decreases in σi,t (i.e., when the firm gets a more precise signal about

θi,t) allow a firm to more precisely match θi,t. This decreases the expected value of d(ai,t, θi,t)

and makes high values thereof less likely. This means that decreases of σi,t raise the expected

productivity and reduce the variance of productivity. By contrast, the precision of the signal

about ϵi,t does not influence the underlying productivity distribution, but merely helps a

firm forecast their future productivities. Notably, all firms with a given level of σi,t will have

the same productivity distribution, while the relevant productivity distribution of any firm

which receives a signal about ϵi,t depends on the realization of the signal.

The data feedback loop

A key feature of the way in which data accumulates is the data feedback loop, as discussed

by Farboodi and Veldkamp (2022a). The presence of the data feedback loop is based on

the idea that data is a byproduct of production and transactions: A firm that produces

more, learns more about its customers’ preferences, about the optimal inventory, etc. This
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effect is particularly pronounced in the data economy and may stem from various sources.16

Formally, we incorporate the data feedback loop by linking the signal quality of a firm to its

capital stock, i.e., we suppose that σi,t = σ̃(Ki,t) and set:

σ̃(Ki,t) = σi − zKi,t. (5)

The parameter z ≥ 0 governs the strength of the data feedback loop. In words, bigger firms,

i.e., firms with a higher capital stock Ki,t, have access to more or better data. This increases

the firm’s expected productivity and reduces its uncertainty, which in turn, incentivizes the

firm to grow even bigger and accumulate even more data. Figure 2 illustrates this data

feedback loop graphically (see Farboodi and Veldkamp (2022a) for a similar graph).

More Data

More Transactions Higher Efficiency

σ i,
t
=
σ̃
(K

i,t
)

Yi,t = Ai,tK
α
i,t

A
i,t =

A
(σ
i,t )

Figure 2: Data Feedback Loop

We suppose that the data feedback loop only influences the type of data which favorably

affects a firm’s productivity distribution σi,t, and not the precision of the signal about the

productivity draws.

A firm’s optimization problem

A firm’s objective function in any period t is given by

max
{Ki,t+1+j}∞j=0

Et

∞∑
j=0

βjΠi,t+j, (6)

16For example, the creation of smart devices which send data back to their manufacturers creates a direct
causal link between the output of a firm and the data it has access to. Another important mechanism through
which data is created is through the algorithmic analysis of click-through rates online. Firms that produce
more get more website visitors (which means the firm gets more data points) and can offer consumers more
varieties (which means the firm can learn more about the tastes of any consumer who visits its website).
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where β ∈ (0, 1] is the discount factor and the flow profits Πi,t+1 are given by:

Πi,t+1 = Ai,t+1(Ki,t+1)
α − Ci(σi,t)Ii,t, (7)

where Ii,t = Ki,t+1−(1−δ)Ki,t is a firm’s investment in period t and Ci(σi,t) is a firm-specific

function that governs a firm’s cost of investment. We specify that this is given by:

Ci(σi,t) = rt + ρiV AR[Ai,t|σi,t] (8)

We define rt as the interest rate that is directly controlled by the monetary policy authority,

which is the same for every firm. If ρi > 0, a firm’s cost of capital is increasing in the

uncertainty it faces. A natural microfoundation is the risk-return relationship which is at

the heart of finance: There is a positive relationship between the riskiness and the return of an

asset, for example due to default risk or because investors are risk averse. As a consequence,

firms who face higher idiosyncratic uncertainty will have a to pay a higher cost in order to

raise capital. Our results would hold analogously if firms have mean-variance preferences

over output as in Eeckhout and Veldkamp (2022), and the cost of capital is simply equal to

rt.

Discussion of key model features

Our objective in this paper is to present a tractable model that allows us to study how

data shape the effects of various aggregate shocks on firm investment, namely (i) aggregate

productivity shocks (changes in Āt), (ii) aggregate uncertainty shocks (changes in V̄t), and

(iii) monetary policy shocks (changes in rt). In this endeavor, it is imperative to explicitly

model the different ways in which data can yield economic value, which we have focused on.

To ensure tractability, we have made several simplifying assumptions, which we now discuss

in more detail.

We model monetary policy shocks as unexpected changes in the firms’ cost of capital and

abstract from how exactly changes in the short-term nominal interest rate are transmitted

to the cost of capital firms face when investing. For the purposes of our analysis, this is

suitable, because our focus is on the investment channel of monetary policy and how data

shapes a firm’s responsiveness to a change in it’s cost of capital (which is induced by a

monetary policy shock). Nevertheless, it is very important to analyze how access to data in

capital markets affects the transmission of nominal shocks to the cost of capital and interest

rate spreads. We leave the analysis of these issues to be addressed by future research.

Further, our model is set in partial equilibrium to shed the spotlight on the role of data
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in firms’ investment decisions. Given that we focus on the investment channel of monetary

policy, this specification can be motivated using recent evidence that monetary policy affects

investment mainly through direct (partial equilibrium) channels (Cao et al., 2023). Modelling

the rest of the economy and embedding our framework in a general equilibrium setup would

endogenize the real interest rate rt, but not affect how firms adjust their investment to a

given change in rt, which is what we are interested in. More generally speaking, the effects

we find would still be active in general equilibrium—thus, our analysis can be viewed as an

initial appraisal of larger questions at hand.

4 Data and the Firm-Level Productivity Distribution
In this section, we study how data affects a firm’s optimization problem by favorably affecting

its productivity distribution. Formally, we thus consider σi,t ∈ R but shut down any other

effects of data, i.e., we set ξi,t → ∞. Furthermore, we impose the following assumptions

throughout the analysis in this section:

Assumption 1 We assume that:

• The flow profit function is strictly concave in capital, i.e.
∂2Πi,t

∂K2
i,t

< 0.

• At the optimally chosen levels of Ki,t, both Et[Ai,t;σi,t] and V AR[Ai,t;σi,t] remain

strictly positive.

The first assumption is necessary to ensure that a unique optimal capital choice exists for

every firm. It also guarantees that a firm’s chosen level of capital is falling in the interest

rate and rising in the expected productivity. The second assumption ensures that we can

always compute firms’ optimal behavior using first order conditions.

When choosing Ki,t+1, the relevant part of the firm’s objective function only contains the

profits in period t+1 and period t+2. This is because profits that are further in the future

and the future optimal capital choices do not depend on Ki,t+1. We define K∗
t+1(σi, z, ρi) as

the optimal capital choice of a firm in period t, which maximizes:

E[Ai,t+1;σi,t+1]K
α
i,t+1 −

(
rt + V AR[Ai,t+1;σi,t+1]

)(
Ki,t+1 − (1− δ)Ki,t

)
+

β

[
E[Ai,t+2;σi,t+2]K

α
i,t+2 −

(
rt+1 + V AR[Ai,t+2;σi,t+2]

)(
Ki,t+2 − (1− δ)Ki,t+1

)]
(9)

In the following, we investigate the impact of aggregate productivity shocks, uncertainty

shocks, and monetary policy shocks on the optimal capital stock of firms. When evaluating
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which type of firms respond particularly strongly to these shocks, we work with elasticities.

We define the elasticity of a firm’s optimal capital choice with respect to an increase in

aggregate productivity as φ(σi, z, ρi). The elasticity of a firm’s optimal capital choice with

respect to an increase in the interest rate rt is defined as γ(σi, z, ρi). Note that:

φ(·) ≡
∂K∗

t+1

∂Āt+1

Āt+1

K∗
t+1

> 0 ; γ(·) ≡
∂K∗

t+1

∂rt

rt
K∗

t+1

< 0 (10)

An increase in aggregate productivity will raise the optimal capital choice of any firm, and

an increase in the interest rate will reduce the optimal capital choice of a firm. Thus, a firm

responds more strongly to an aggregate productivity shock if φ(·) is higher. By contrast, a

firm responds more strongly to a monetary policy shock if γ(·) is lower.

4.1 Benchmark Results

In this subsection, we start by considering a data economy in which there is no data feedback

loop and study how exogenous differences in access to data shape the responsiveness of firms

to different types of shocks. In the subsection that follows, we will then discuss how the

presence of the data feedback loop affects these results. In the following, we always assume

that the economy is in the steady state when the shock hits.

Proposition 1 Suppose that the data feedback loop is inactive (z = 0). Then:

• ∂γ(·)
∂σi

≥ 0, with strict inequality if κv > 0, i.e., firms with better data respond more

strongly to monetary policy shocks.

• ∂φ(·)
∂σi

≥ 0, with strict inequality if κe > 0, i.e., firms with better data respond less

strongly to aggregate productivity shocks.

If better data reduces the uncertainty a firm faces (i.e. κv > 0) firms with access to better

data will respond more strongly to monetary policy shocks. This is because the variance of

future productivity enters the cost of capital. When this variance is small (i.e. when a firm

has access to high-quality data), changes in the interest rate rt imply large (in percentage

terms) changes in a firm’s total cost of capital. As a result, changes in the interest rate

affect data-rich firms to a greater extent. However, if access to better data does not reduce

a firm’s uncertainty, i.e. κv = 0 holds, having access to better data merely shifts up the

marginal product of capital via the higher level of E[Ai,t+1|σi,t+1], so any increase in the

absolute responsiveness of a firm would be proportional to its size.
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The first result in Proposition 1 also holds true when the data feedback loop is active.

Thus, the model can always replicate our empirical prediction that firms with access to

superior data respond more strongly to monetary policy.

The second result in Proposition 1 says that firms with better data respond less strongly

to aggregate productivity shocks. This is because firms with better access to data (smaller

σi) have a higher expected productivity Et[Ai,t+1;σi] = Āt+1 − κeσi. Thus, any increase of

Āt+1 will trigger a smaller change of the expected productivity (in percentage terms) of firms

with access to better data, which thus respond less strongly to changes in Āt+1. In section

5, we show that this result holds true even if access to better data does not increase the

expected productivity of firms, but only enables firms to predict their future productivity

realizations.

These results indicate that greater availability of data will dampen cyclical fluctuations

caused by aggregate productivity shocks. Moreover, in an economy in which data is un-

equally distributed, firms with superior access to data will attain relatively higher market

shares in recessions (that are driven by aggregate productivity declines). Because these firms

respond strongly to monetary policy shocks, the effectiveness of monetary policy becomes

countercyclical, ceteris paribus.

4.2 The Data Feedback Loop

From now on, we focus on the role of the data feedback loop, which we abstracted from up to

now. Formally, we consider arbitrary levels of z > 0 in this subsection (under the constraint

that assumption 1 is still satisfied) and establish the following three main insights: First,

the presence of the data feedback loop strengthens the positive relationship between a firm’s

exogenous access to data (governed by the parameter σi) and its size. Second, while firms

with access to better data respond less strongly to aggregate productivity shocks when the

data feedback loop is inactive, the sign of this relationship flips if the data feedback loop

becomes strong enough. Third, the presence of the data feedback loop weakens the negative

relationship between a firm’s risk sensitivity (measured by the parameter ρi) and its size.

The first issue we analyze is how the data feedback loop affects the relationship between

a firm’s exogenous data access (given by the parameter σi) and its size:

Proposition 2 For any z ≥ 0, firms with better access to data are larger, i.e.,
∂K∗

t+1

∂σi
< 0.

Moreover, the magnitude of this relationship increases in z, i.e.,
∂2K∗

t+1

∂σi∂z
< 0 holds, if:

• κe = 0 and κv > 0 holds true or
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• κe > 0 and κv = 0 holds true.

One might have expected that an endogenous accumulation process for data levels the playing

field in the sense that the firms with exogenously better access to data hold less comparative

advantages. The opposite holds true by the following intuition: In general, firms with access

to better data (smaller σi) are larger, consistent with what we see in the data (Table 1).

When the data feedback effect is active, this size difference grants such firms additional

advantages in the data they can utilize, which further increases their size.

Numerical analysis suggests that these results hold true even when κe > 0 and κv > 0,

but analyzing said relationship for such parameter constellations is analytically intractable.

Figure 3: Firm Size, Data, and the Data Feedback Loop

This figure shows the optimal capital stock in steady state, K∗, for different values of exogenous access to
data, σi, and different strengths of the data feedback loop, z. Calibration: α = 0.3, κe = 0.002, κν = 0.025,
Ā = 2, ρi = 0.5, δ = 0.02, V̄ = 1, r = 0.1, β = 0.99.

We now move on to establish how the data feedback loop shapes the effects of aggregate

productivity shocks:

Lemma 1 Increases in the strength of the data feedback loop amplify the relative effects of

an aggregate productivity shock, i.e., ∂φ(·)
∂z

> 0.
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Figure 4: Response to Productivity Shocks, Data, and the Data Feedback Loop

(a) No data feedback loop z = 0 (b) Strong data feedback loop z = 0.01
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This figure shows the elasticity of capital to aggregate productivity Ā, φ(·), for different values of data σi.
The left panel shows this relationship for the case in which there is no data feedback loop, z = 0, and the
right panel shows it for the case of an active data feedback loop, z > 0.

Firms respond to an increase in Āt+1 by increasing their capital input. When the data

feedback loop is active, this further boosts their access to data, thereby raising their capital

input even more. The intuition of this result is similar to the one in Fajgelbaum et al. (2017),

who consider a data feedback loop at the aggregate level.

Moreover, increases in the strength of the data feedback loop also affect the relationship

between a firm’s exogenously given access to data (governed by the parameter σi) and it’s

responsiveness to an aggregate productivity shock:

Proposition 3 If z is large enough, firms with better data respond more strongly to an

aggregate productivity shock, i.e.:

∂φ(·)
∂σi

< 0 ⇐⇒
(
α(α + 1)κez + 2ρiκvz(2− α)(K∗

t+1)
1−α

)∂K∗
t+1

∂σi

< κeα(α− 1) (11)

To understand the result formally, note that the left-hand side of the second inequality in

equation (11) is decreasing in the strength of the data feedback loop (z), because K∗
t+1 is

increasing in z and
∂K∗

t+1

∂σi
is decreasing in z (by Proposition 2). Importantly, the sign of

the relationship between a firm’s access to data and the firm’s responsiveness to aggregate

productivity shocks also depends on the parameters κe and κv. For example, if κe = 0,

κv > 0, then ∂φ(·)
∂σi

< 0 holds true for any z > 0. The key insight of this Proposition is

visualized in Figure 4.
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To understand the intuition underlying the result, recall the case in which z = 0. Then,

firms with better data respond less strongly to aggregate productivity shocks. This is because

firms with better access to data (smaller σi) have a higher expected productivity E[Ai,t+1] =

Ā− κeσi. Thus, any increase of Ā will trigger a smaller change of the expected productivity

(in percentage terms) of firms with access to better data, which thus respond less strongly

to changes in Ā.

If the data feedback effect becomes sufficiently strong, the sign of this relationship flips:

Firms with better data will respond more strongly to aggregate productivity shocks. This is

because increases in the strength of the data feedback loop (i.e., an increase of z) amplify the

responsiveness of any firm to an aggregate productivity shock, and this effect is particularly

strong for firms with access to better data. The latter statement holds true by the following

logic: Any increase of z will add a convex term into the profit function of any firm. In

percentage terms, this reduces the (local) curvature of profits the most for firms with access

to better data, because these firms are larger, i.e., produce at a point where the profit

function is already relatively linear. By inducing relatively large decreases (in percentage

terms) in the curvature of profits for firms with better data, increases in the data feedback

loop thereby amplify the responsiveness of these firms to aggregate productivity shocks.

These theoretical predictions enable a deeper understanding of our empirical findings

regarding the relationship between firms’ access to data and their exposure to cyclical fluc-

tuations. Recall that we have established the following two empirical findings: The market

shares of firms with positive data intensity (i.e., access to data) are more countercyclical

than the markets shares of firms with zero data intensity (i.e., no access to data). Within

the group of firms with positive data intensity, however, the market shares of firms with

superior access to data are more procyclical.

The insight which reconciles our empirical findings and our theoretical predictions is that

firms with zero data intensity can not benefit from a data feedback loop at all, because there

are no employees which can utilize more output to produce better data. By construction,

the strength of the data feedback loop is thus greater among the group of firms with positive

data intensity than in the entire set of firms. This directly explains our empirical finding

that greater access to data strengthens firms’ responsiveness to cyclical fluctuations on the

extensive margin, but dampens firms’ responsiveness on the intensive margin.

These theoretical results imply that the strength of the data feedback loop determines

whether the increasing availability of data amplifies or reduces cyclical fluctuations. When

there is no data feedback loop, the greater availability of data amplifies cyclical fluctuations

and makes the strength of monetary policy countercyclical. These results hinge on the fact
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that data-rich firms respond less strongly to aggregate productivity shocks. When the data

feedback loop becomes strong enough, the sign of this relationship flips, which implies that

greater availability of data amplifies cyclical fluctuations. Moreover, the effectiveness of

monetary policy becomes procyclical. This is because firms with access to superior data,

who respond more strongly to monetary policy, attain larger market shares in booms.

The data feedback loop also affects the relationship between firm size and other dimen-

sions of firm heterogeneity. In particular, we now consider how the data feedback loop

affects the relationship between firms’ risk sensitivity (represented by the parameter ρi) and

their capital holdings (and by extension, their size). The presence of the data feedback ef-

fect may induce firms who are more sensitive to risk to hold higher levels of capital. This

is particularly relevant when considering the impact of cyclical fluctuations, which coincide

with movements in aggregate uncertainty and the slope of the risk-return relationship, which

directly relates to the parameter ρi. We establish the following result:

Proposition 4 If z = 0, then
∂K∗

t+1

∂ρi
< 0. By contrast,

∂K∗
t+1

∂ρi
> 0 holds if:

(
V̄t+1 + κvσi − κvzK

∗
t+1

)
− κvz

(
K∗

t+1 − (1− δ)Kt

)
< 0 (12)

The strength of the data feedback effect z thus determines whether more risk sensitive firms

hold more or less capital. When z = 0, firms that are more exposed to risk (i.e., have a

higher ρi) hold less capital, because increases in ρi go along with higher costs of capital.

When z > 0, there is an opposing effect: Attaining scale by increasing Kt+1 allows a firm to

reduce the idiosyncratic risk it faces through the data feedback loop. The economic benefits

of this channel are particularly high for firms that are very sensitive to risk. If this channel

becomes strong enough, which happens if z becomes large, then the sign of the relationship

between a firm’s level of risk sensitivity (ρi) and it’s capital level may flip.

These results affect the magnitude of cyclical fluctuations by changing the average risk

sensitivity of firms in the economy. To see this, suppose that ρi is heterogeneous across

firms/industries but constant over time. This type of heterogeneity naturally arises for

many reasons, including differences in bankruptcy risk and the cyclicality of firm’s produc-

tivity (David and Zeke, 2023). By the results of proposition 4, the presence of the data

feedback effect will increase the overall sensitivity of firms to risk, because firms with high

risk sensitivity (high ρi) have stronger incentives to grow larger. This composition effect

implies that the response of aggregate investment to movements in aggregate uncertainty

will be amplified when the strength of the data feedback loop increases. This is because the

market share of firms with high ρi, who are particularly susceptible to aggregate uncertainty
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Figure 5: Capital, risk-sensitivity and the data feedback loop

(a) No data feedback loop z = 0 (b) Strong data feedback loop z = 0.02
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This figure shows the steady state capital stock for different values of risk sensitivity ρi. The left panel shows
this relationship for the case in which there is no data feedback loop, z = 0, and the right panel shows it for
the case of an active data feedback loop, z > 0.

shocks, increases when the data feedback effect becomes stronger. Given that countercyclical

movements of aggregate uncertainty are a key feature of business cycles (Bloom et al., 2018),

this channel is likely to amplify the effects of business cycles.

5 Data and Idiosyncratic Productivity

Now, we study the role of data in helping firms forecast their future productivity realizations.

The key insights of this section are the following: Even if data does not favorably affect the

distribution of a firm’s productivity nor its cost of capital, the presence of data dampens

cyclical fluctuations (if there is no data feedback loop). If firms with access to superior data

have lower costs of capital (which naturally emerges in the following environment because

firms with access to superior data face lower bankruptcy risk), these firms respond more

strongly to monetary policy, and the effectiveness of monetary policy is countercyclical.

Formally, we consider the following special case of the environment outlined in section 3:

There are two time periods t ∈ {1, 2}. In period 1, there is no production, but firms choose

their capital stock for period 2. There is a unit mass of firms indexed by i and the second-

period productivity of a firm is given by Ai,2 = Ā+ϵi, where Ā is common knowledge and can

be understood as the aggregate productivity component. We model aggregate productivity

shocks as changes of Ā.
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The are two different types of firms, namely firms with data and firms without data. We

index the type of a firm using the indicator j ∈ {d, nd}, where d refers to firms with data.

Firms with data receive a perfect signal about their realization of ϵi in period 1 (i.e., they

have ξi,t = 0 as defined in the framework of section 3), while firms without data receive no

signal about ϵi (i.e., ξi,t → ∞ holds). To allow for the previously discussed features to be

active, we allow the productivity distribution to vary across firms with and without data.

We define the distribution of ϵi for a firm with data as Gd, with support [ϵd, ϵ̄d], and the

distribution of ϵi for a firm without data as Gnd, with support [ϵnd, ϵ̄nd]. The cost of acquiring

one unit of capital is rd := r + ρ̃d for firms with data and rnd := r + ρ̃nd for firms without

data. The favorable impact of data on a firm’s cost of capital, which was considered in the

previous section, can hence be modelled by specifying that ρ̃d ≤ ρ̃nd. The interest rate r is

controlled by the monetary authority. For tractability, we assume that the data feedback

loop is inactive. We define the share of firms with data in the economy as ω ∈ (0, 1).

For brevity, we relegate all formal results pertaining to this section to the appendix —

these can be found in section D of the appendix. We merely reference and briefly discuss these

results now. Throughout the analysis, we place particular emphasis on the case in which

ρ̃nd = ρ̃d and Gnd = Gd, i.e., in which superior access to data only yields value by providing

signals about future productivities, but not by affecting the distribution of productivity nor

the capital costs of firms. In Lemma 2, we characterize the expected capital stock and

output of a firm with data and a firm without data, respectively. We demonstrate that the

availability of data increases aggregate output, even when it does not favorably affect the

aggregate distribution of productivity nor a firm’s cost of capital.

If a firm’s cost of capital is not affected by data, the relativr effect of a monetary policy

shock on the expected output (respectively, capital) of firms with data is equal to the effect

of the shock on the expected output (respectively, capital) of firms without data (Proposition

5). As before, firms with data respond more strongly to monetary policy shocks if access to

data reduces a firm’s cost of capital. This is the natural benchmark because, even if data

does not favorably affect a firm’s productivity distribution, firms with data (i.e., who receive

signals about future productivity realizations) will likely face lower costs of capital because

access to this type of data reduces the risk of bankruptcy.

Proposition 6 establishes that, if α < 0.5, firms with access to superior data respond less

strongly to aggregate productivity shocks. The underlying intuition is as follows: If firms

have access to data about their idiosyncratic productivities, changes in aggregate productiv-

ity induce smaller changes in their information sets, thereby eliciting a weaker response.

Given that estimates for the parameter α are commonly in the range [0.3, 0.5], the result
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contained in Proposition 6 indicates that all results regarding cyclical fluctuations from the

previous analysis extend naturally: If there is no data feedback loop, cyclical fluctuations

will be dampened when more firms attain access to data that allows them to predict their

future productivities (Corollary 1). Moreover, the effects of a monetary policy shock are

countercyclical because firms with access to superior data, who respond particularly strongly

to monetary policy, attain relatively large market shares in recessions (Corollary 2).

Finally, we study how firms’ incentives to acquire data that enables them to forecast

their future productivities is affected by monetary policy and aggregate productivity shocks

(Corollary 3). As before, the value of data is decreasing in a firm’s cost of capital. By

contrast, the incentives of firms to acquire data that enables forecasting is falling in aggregate

productivity, which stands in contrast to the corresponding result from the previous section.

6 Endogenous Data Acquisition and Data Trading

An important feature of data is that it can be easily acquired through data brokers and

data intermediaries. The economic value of data that is exchanged on data markets is

enormous (Transparency Market Research, 2022) and the prominence of data brokers in

the modern economy has attracted regulatory scrutiny (Federal Trade Commission, 2014;

European Commission, 2022). The size of these markets implies that movements in the

aggregate demand and supply of data will have substantial macroeconomic consequences.

In this section, we thus study how firms’ incentives to acquire data are shaped by monetary

policy and cyclical fluctuations. This generates insights pertaining to the dynamics of the

aggregate demand for data, which complements previous work on the aggregate supply of

data such as Fajgelbaum et al. (2017).

The value of data (as defined in either section) is decreasing in a firm’s cost of capital.

To see this, consider firm profits as defined in equation (9), which allows for an evaluation of

the value of data which improves a firm’s productivity distribution. The value of this type

of data is increasing in the firm’s capital stock, which is falling in the interest rate the firm

has to pay. Equivalently, corollary 3 establishes that the value of data which enables firms

to forecast their future productivities is falling in the interest rate. When firms can purchase

data on data markets, the effects of monetary policy are thus amplified — for example,

expansionary monetary policy raises the aggregate demand for data, which additionally

boosts firm investment and output.

The incentives of firms to acquire data which favorably affects their productivity distribu-

tion (as discussed in section 4) are procyclical. This can be seen when examining firm profits
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as defined in equation (9). When the volume of this type of data that is exchanged on data

markets is substantial, this working channel thus amplifies cyclical fluctuations. Moreover,

this working channel makes the effectiveness of monetary policy more countercylical, given

that firms with superior access to data respond more strongly to monetary policy.

By contrast, the incentives of firms to acquire data which enables them to forecast their

future productivities (as discussed in section 5) are countercylical (similar to the empirical

findings in Song and Stern (2024) regarding firm attention to aggregate state variables).

This follows from the insights established in corollary 3: When aggregate productivity is

low, firms’ idiosyncratic productivity draws attain higher weight in their total productivity,

which means that the value of data which enables firms to forecast these is larger. The fact

that the demand for this type of data is countercyclical can thus dampen the magnitude

of cyclical fluctuations and render the effectiveness of monetary policy more countercylical.

Finally, endowing firms with access to data about their future productivities reduces cap-

ital misallocation, which means that this working channel makes the degree of aggregate

misallocation more countercyclical.

7 The Effects of Digital Markets Regulation

Our work also provides a conceptual framework to determine how digital markets regulation

such as the EU GDPR, the DMA, and the UK DPA affects macroeconomic outcomes. This

is because this type of regulation is centered around the governance of data and our work

directly speaks to the macroeconomic role of data. It is inevitable that digital markets

regulation affects the economy as a whole, given the scope of this type of regulation and the

relevance of digital markets in modern economies. Thus, understanding the macroeconomic

effects thereof is of first-order importance, especially because the macroeconomic perspective

has essentially been absent from the policy debate surrounding these pieces of legislation.

Different policy measures in the area can be understood as changes in the strength of the

data feedback loop or the exogenous availability of data to firms. To reinforce this point,

we consider two cornerstones of the existing regulation on digital markets, namely (1) the

establishment of a right to data portability (as codified in the EU GDPR and the DMA)

and (2) the prohibition of data transfer within firms, which the EU commission imposed on

Google as part of its merger with Fitbit (European Commission, 2020).

Consider first the implementation of a right to data portability, as defined in the EDU

GDPR and reinforced in the DMA. This right allows consumers to transfer all the data a

given firm has about them to its competitor. To see how to model this within our framework,
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suppose that there are two firms j ∈ {A,B} with different exogenous access to data. The

establishment of a right to data portability allows for the transfer of data between firms

and would thus induce a reduction of σj (i.e., an improvement in the exogenous access to

data) for both firms. Moreover, the improvement in data access would likely be particularly

pronounced for the firm with ex ante worse access to data. Such increases in the access to

data raise the responsiveness of both firms to monetary policy, while the impact on the effect

of aggregate productivity shocks depends on the strength of the data feedback loop.

Now consider the second type of legislation, which prohibits the transfer of data within a

firm. Essentially, this limits the ability of a firm to use data on the behaviour of consumers

in other branches of the firm (e.g., in advertising or the forecasting of individual product

success). Within our framework, this can be viewed as a reduction in the strength of the data

feedback loop. Through various channels, this reduces the magnitude of cyclical fluctuations

caused by aggregate productivity or uncertainty shocks. It also reduces the competitive

advantages generated by exogenous heterogeneity in firms’ access to data.

The analysis in section 6 has established that regulation which affects the trading of data

on data markets will have differential effects, depending on the type of data it targets. To

emphasize this, consider a policymaker who is interested in reducing the magnitude of cyclical

fluctuations and raising the relative effectiveness of monetary policy in recessions. This can

be achieved by curbing trade of data that improves a firms’ productivity distribution, but

the contrary is achieved if the policymaker restricts the trade of data that enables firms to

forecast their future productivity.

8 Conclusion

Firms’ utilization of (big) data is a key feature of modern economies. A central feature of

data which distinguishes it from existing technologies is that access to data enables firms

to predict components of their future productivity such as demand, costs, and strategic

choices of rivals. Up to 75% of US manufacturing firms are using data for such forms of

predictive analytics (Brynjolfsson and McElheran, 2019). However, the ways in which these

technological developments shape macroeconomic outcomes and dynamics are not yet well

understood. Motivated by these developments, we study how data shape the propagation of

cyclical fluctuations and the effectiveness of monetary policy along the business cycle.

We document that more data-intensive firms respond more strongly to monetary policy

shocks, especially to expansionary ones. Additionally, we find that among firms that make

any use of data, more data-intensive firms gain market shares in booms.
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To understand these empirical findings, we develop a tractable theoretical framework of

data and firm investment. Within the model, firms with access to superior data incur a

lower cost of capital because superior data reduces the degree of idiosyncratic uncertainty

a firm faces. We show that our results on how data affects firms’ investment response to

monetary policy shocks arise in line with this rationale. That is, data-intensive firms face

lower idiosyncratic uncertainty and are less financially constrained. Thus, a given change

in the interest rate induced by the central bank changes (in percentage terms) a firm’s cost

of capital more substantially if it has data, thereby eliciting a greater response. The effects

regarding the cyclicality of data-intensive firms’ market shares are indicative of a strong data

feedback loop.

Our analysis of the effects of digital markets regulation on macroeconomic outcomes sug-

gests profound complementarities between these pieces of legislation and standard macroe-

conomic instruments. These connections are of central importance to policymakers and

warrant further scrutiny. It is highly likely that the economic importance of big data will

increase substantially in the next decade as more economic activity moves into the digital

realm, and advances in AI unlock the full predictive power of data. Therefore, firms’ data

usage is likely to not just shape their investment decisions, but also how they operate, their

labor demand, and innovation, with potential effects on productivity, market structure, and

the income distribution. These dynamics remain open questions, underscoring the need for

future research to fully understand the broader implications of data-driven economies and

their interaction with regulatory and macroeconomic policies.
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A Supplementary Empirical Evidence

Figure A.1: Longer-Run Amplification—Robustness
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The figure shows results from local projections, obtained by regressing h-step-ahead values of the natural
logarithm of firm f ’s capital expenditure in year t on Data intensity > 0ft−1, which is an indicator for
whether the sample-weighted share of data-related employees (with job roles classified as “data analyst,”
“data engineer,” “data scientist,” or ´´database administrator”) at firm f at the end of year t − 1 is
nonzero, interacted with MP shock t, which is the 30-minute change in expectations of the Federal Funds
rate immediately after each FOMC meeting (the first component of the policy news shock in Nakamura
and Steinsson, 2018). The figure plots the estimated coefficients on this interaction term. All regressions
control for firm fixed effects, industry by year fixed effects (based on four-digit NAICS codes), the first lag of
capital expenditure, Data intensity > 0ft−1, the natural logarithm of Employmentft−1, which is the number
of employees at firm f in year t − 1, IT employment shareft−1, which is the share of IT-related employees
at firm f in the same year, and also for alternative monetary policy transmission mechanisms by including
firm f ’s leverage, age, cash-to-assets ratio, and intangible-asset ratio in year t− 1 as well as their interaction
with MP shock t. The plot shows point estimates alongside 90% and 95% confidence bands, obtained from
standard errors clustered at the firm level.
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B Analytical Results

Business Cycle effects regarding relationship between data and MP responsiveness:

The elasticity of capital w.r.t. to a MP shock (and how it is shaped by data) is given

by the following:

γ(·) =
∂K∗

t+1

∂rt

rt
K∗

t+1

=
−rt/(1− α)[

rt + ρiV AR[A;σi]
] < 0 (13)

Thus, we have:

∂γ(·)
∂σi

=
rtρiκv/(1− α)[

rt + ρiV AR[A;σi]
]2 ≥ 0 (14)

We can take the cross-derivative of this w.r.t Ā (the aggregate productivity component), to

back out the desired effect of interest. If the data feedback loop is inactive, then V AR[A;σi]

is independent of Ā, but of course, the variance of productivity (V̄ ) is larger in a recession.

The negative relationship between Ā and the variance of productivity is further exacerbated

by the data feedback loop. Thus:

∂2γ(·)
∂σi∂Ā

=
−2rt(ρi)

2κv/(1− α)[
rt + ρiV AR[A;σi]

]3 ∂V AR[A;σi]

∂Ā︸ ︷︷ ︸
<0

> 0

Thus, the conclusion is the following: The relationship between a firm’s access to data and

its responsiveness to a MP shock is particularly strong in a boom (high Ā) and less strong

in a recession. The intuition is: In a recession, the variance of productivity is very large for

all firms. The differences in uncertainty caused by differential access to data thus weigh less

(in relative, percentage terms). Thus, the relationship between data and the responsiveness

to MP becomes less pronounced in a recession.

In the presence of the data feedback loop, there is the following countervailing effect (which

can explain our empirical finding). If z is large enough, firms with better data (low σi) re-

spond more strongly to an aggregate productivity shock. Thus, suppose there is a recession:

Then, data-rich firms reduce their output by a lot (in relative terms). The differences in the

variances of productivity between high-data and low data firms thus become less pronounced

(through the data feedback loop). These differences drive the differential effect of monetary

policy, which thus explains the empirical result that the relationship between data and the
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firm-level responsiveness to MP is particularly strong in a recession.

Convexity/concavity of nexus between data and MP responsiveness:

Note that:
∂2γ(·)
∂σ2

i

=
−2rt(ρiκv)

2/(1− α)[
rt + ρiV AR[A;σi]

]3 < 0

Note that:
∂2γ(·)
∂σ2

i ∂rt
=

6rt(ρiκv)
2/(1− α)[

rt+1 + ρiV AR[A;σi]
]4 > 0

Thus, the dampening effect of less data (higher σi) on the responsiveness of MP is particu-

larly strong at low levels of σi (large amounts of data).

Put differently: If you start at low levels of data, raising access to data has a weak ef-

fect on the effectiveness of MP on investment. At high initial levels of data, raising access to

data has a strong effect on the effectiveness of MP on investment. The underlying intuition

is based on the linearity assumption regarding the relationship between data and the vari-

ance of productivity (in the absence of the data feedback loop): Increasing access to data

reduces the variance of productivity linearly. At low initial levels of data access, the variance

of productivity is large, so granting access to better data will only reduce the variance of

output by a small amount (in percentage terms), and thus only has a weak effect on the

responsiveness of capital to MP.

C Proofs

C.1 Proof of Proposition 1

Part 1: The effects of monetary policy shocks

When choosing Kt+1, the relevant part of a firm’s objective function is:

E[At+1;σi,t+1]K
α
t+1 −

(
rt + ρiV AR[At+1;σi,t+1]

)(
Kt+1 − (1− δ)Kt

)
+

β

[
E[At+2;σi,t+2]K

α
t+2 −

(
rt+1 + ρiV AR[At+2;σi,t+2]

)(
Kt+2 − (1− δ)Kt+1

)]
(15)
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When z = 0, the first-order condition the optimal capital stock has to satisfy reads:

α(Kt+1)
α−1E[A;σi]−

(
1− β(1− δ)

)(
rt + ρiV AR[A;σi]

)
= 0 (16)

Thus, the optimal capital stock satisfies:

K∗
t+1 =

[
αE[A;σi](

1− β(1− δ)
)(
rt + ρiV AR[A;σi]

)]1/(1−α)

(17)

This implies that:

∂K∗
t+1

∂rt
=

1

1− α

[
αE[A;σi](

1− β(1− δ)
)(
rt + ρiV AR[A;σi]

)]1/(1−α)−1[ −αE[A;σi]
(
1− β(1− δ)

)[(
1− β(1− δ)

)(
rt + ρiV AR[A;σi]

)]2]
=

K∗
t+1

[
−1/(1− α)[

rt + ρiV AR[A;σi]
]] (18)

The elasticity with respect to a monetary policy shock is given by

γ(·) =
∂K∗

t+1

∂rt

rt
K∗

t+1

=
−rt/(1− α)[

rt + ρiV AR[A;σi]
] < 0 (19)

Thus, we have:

∂γ(·)
∂σi

=
rtρiκv/(1− α)[

rt + ρiV AR[A;σi]
]2 ≥ 0 (20)

This inequality is strict if and only if κv > 0.

Part 2: The effects of aggregate productivity shocks

When z = 0, we have:

φ(·) = ∂Kt+1

∂Ā

Ā

K∗
t+1

=
Ā

(1− α)E[A;σi]
=⇒ ∂φ(·)

∂σi

=
−1(−κe)Ā

(1− α)
[
E[A;σi]

]2 > 0 (21)

37



C.2 Proof of Proposition 2

Consider any z ≥ 0. The first-order condition which the optimal capital stock has to satisfy

reads:

T (·) := αKα−1
t+1 (E[At+1;Kt+1])︸ ︷︷ ︸

=Ā−κeσi+κezKt+1

+
∂E[At+1]

∂Kt+1︸ ︷︷ ︸
=κez

Kα
t+1 −

(
rt + ρi V AR[At+1;Kt+1]︸ ︷︷ ︸

=V̄+κvσi−κvzKt+1

)

−ρi
∂V AR[At+1]

∂Kt+1︸ ︷︷ ︸
=−κvz

(
Kt+1 − (1− δ)Kt

)
+ β(1− δ)

(
rt+1 + ρiV AR[At+2;Kt+2]

)
= 0 (22)

One can show that
∂K∗

t+1

∂z
> 0. This holds because:

∂T

∂z
= ακeK

α
t+1 + κeK

α
t+1 + ρiκv

(
Kt+1 − β(1− δ)Kt+2

)
+ ρiκv

(
Kt+1 − (1− δ)Kt

)
> 0 (23)

∂T

∂Kt+1

= α(α− 1)(Kt+1)
α−2

(
E[At+1]

)
+ 2αKα−1

t+1 κez + 2ρiκvz < 0 (24)

The first inequality holds because the optimal capital stock of any firm is constant over time

in the setting we consider.

Note further that:

∂T

∂σi

= −κeαK
α−1
t+1 − ρiκv

(
1− β(1− δ)

)
< 0 (25)

It follows that:

∂K∗
t+1

∂σi

=
κeαK

α−1
t+1 + ρiκv

(
1− β(1− δ)

)
α(α− 1)(Kt+1)α−2

(
E[At+1]

)
+ 2αKα−1

t+1 κez + 2ρiκvz
< 0 (26)

If κe = 0, it is relatively easy to evaluate how this object is shaped by increases in the

strength of the data feedback loop. Then, we have:

∂K∗
t+1

∂σi

=
ρiκv

(
1− β(1− δ)

)
α(α− 1)(Kt+1)α−2

(
E[At+1]

)
+ 2ρiκvz

(27)
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It follows that:
∂2K∗

t+1

∂σi∂z
=

−ρiκv

(
1− β(1− δ)

)[
α(α− 1)

(
E[At+1]

)
(Kt+1)α−2 + 2ρiκvz

]2
[
α(α− 1)(α− 2)(E[At+1])(Kt+1)

α−3∂Kt+1

∂z
+ 2ρiκv

]
< 0 (28)

In other words, increases in the strength of the data feedback loop exacerbate the relation-

ship between a firm’s exogenous access to data and its size.

Now let’s consider a general κe > 0 and set κv = 0. In that case, we have that:

∂K∗
t+1

∂σi

=
κeα

α(α− 1)(Kt+1)−1
(
Ā− κeσi + κezKt+1

)
+ 2ακez

=

κeα

α(α− 1)(Kt+1)−1
(
Ā− κeσi

)
+ α(α + 1)κez

(29)

Then, it follows that:

∂2K∗
t+1

∂σi∂z
=

−κeα
[
− α(α− 1)(Kt+1)

−2
(
Ā− κeσi

)
∂Kt+1

∂z
+ α(α + 1)κe

][
α(α− 1)(Kt+1)−1

(
Ā− κeσi

)
+ α(α + 1)κez

]2 < 0 (30)

C.3 Proof of Lemma 1

Recall that, for any z ≥ 0, the first-order condition the optimal capital stock has to satisfy

reads:

T (·) := αKα−1
t+1 (E[At+1;Kt+1])︸ ︷︷ ︸

=Ā−κeσi+κezKt+1

+
∂E[At+1]

∂Kt+1︸ ︷︷ ︸
=κez

Kα
t+1 −

(
rt + ρiV AR[At+1;Kt+1]

)

−ρi
∂V AR[At+1]

∂Kt+1︸ ︷︷ ︸
=−κvz

(
Kt+1 − (1− δ)Kt

)
+ β(1− δ)

(
rt+1 + ρiV AR[At+2;Kt+2]

)
= 0 (31)

Before moving forward, note that:

∂T

∂Ā
= α(Kt+1)

α−1 ;
∂T

∂σi

= −κeαK
α−1
t+1 − ρiκv

(
1− β(1− δ)

)
(32)

39



∂T

∂Kt+1

= α(α− 1)
(
E[At+1]

)
(Kt+1)

α−2 + 2αKα−1
t+1 κez + 2ρiκvz (33)

Based on this, we can directly conclude:

∂Kt+1

∂Ā
=

−α(Kt+1)
α−1

α(α− 1)
(
E[At+1]

)
(Kt+1)α−2 + 2αKα−1

t+1 κez + 2ρiκvz
> 0 (34)

Let’s examine the relative effects of the aggregate productivity shock, which is given by:

φ(·) =
Ā

∂K∗
t+1

∂Ā

K∗
t+1

=
−αĀ(Kt+1)

α−1

α(α− 1)
(
E[At+1]

)
(Kt+1)α−1 + 2ακezKα

t+1 + 2ρiκvzKt+1

=

−αĀ

α(α− 1)
(
Ā− κeσi + κezKt+1

)
+ 2ακezKt+1 + 2ρiκvz(Kt+1)2−α

=

−αĀ

α(α− 1)
(
Ā− κeσi

)
+ α

(
α + 1

)
κezKt+1 + 2ρiκvz(Kt+1)2−α

> 0 (35)

It follows that:

∂φ(·)
∂z

=
αĀ[

α(α− 1)
(
Ā− κeσi

)
+ α

(
α + 1

)
κezKt+1 + 2ρiκvz(Kt+1)2−α

]2
[
α(α + 1)κe

∂[zKt+1]

∂z
+ 2ρiκv

∂[z(Kt+1)
2−α]

∂z

]
> 0 (36)

This expression is strictly positive because Kt+1 is increasing in z.

C.4 Proof of Proposition 3

When z > 0, we have that:

φ(·) = ∂Kt+1

∂Ā

Ā

Kt+1

=
−αĀ

α(α− 1)
(
Ā− κeσi

)
+ α

(
α + 1

)
κezKt+1 + 2ρiκvz(Kt+1)2−α

(37)

This implies that:

∂φ(·)
∂σi

=
αĀ[

α(α− 1)
(
Ā− κeσi

)
+ α

(
α + 1

)
κezKt+1 + 2ρiκvz(Kt+1)2−α

]2
[
− α(α− 1)κe +

(
α(α + 1)κez + 2ρiκvz(2− α)(Kt+1)

1−α
)∂Kt+1

∂σi

]
(38)
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If z = 0, this expression is strictly positive. If z > 0, this expression is strictly negative if

and only if:

−κeα(α− 1) +
(
α(α + 1)κez + 2ρiκvz(2− α)(Kt+1)

1−α
)∂Kt+1

∂σi

< 0 (39)

⇐⇒

(
α(α + 1)κez + 2ρiκvz(2− α)(Kt+1)

1−α
)∂Kt+1

∂σi

< κeα(α− 1) (40)

This holds true, for example, if κe = 0 and κv > 0.

C.5 Proof of Proposition 4

As before, the optimal capital stock must solve the following first-order condition:

T (Kt+1, rt) := αE[At+1;Kt+1]K
α−1
t+1 +

∂E[At+1;Kt+1]

∂Kt+1

Kα
t+1 −

(
rt + ρiV AR[At+1;Kt+1]

)

−ρi
∂V AR[At+1;Kt+1]

∂Kt+1

(
Kt+1 − (1− δ)Kt

)
+ β

(
1− δ

)(
rt+1 + ρiV AR[At+2;Kt+2]

)
= 0 (41)

Let’s examine the derivative of the capital stock w.r.t ρi. To calculate this, note that:

∂T

∂ρi
= −V AR[At+1;Kt+1]−

∂V AR[At+1;Kt+1]

∂Kt+1

(
Kt+1 − (1− δ)Kt

)
+ β(1− δ)V AR[At+2;Kt+2]

(42)

Thus, the desired relationship is given by:

∂K∗
t+1

∂ρi
=

V AR[At+1;Kt+1] +
∂V AR[At+1;Kt+1]

∂Kt+1

(
Kt+1 − (1− δ)Kt

)
− β(1− δ)V AR[At+2;Kt+2]

∂Π
∂Kt+1

(43)

The denominator is negative by assumption. Thus, the entire term is negative if the numer-

ator is positive. If z = 0, this holds, because the numerator becomes:

V AR[At+1;Kt+1] +
∂V AR[At+1;Kt+1]

∂Kt+1︸ ︷︷ ︸
=0

(
Kt+1 − (1− δ)Kt

)
− β(1− δ)V AR[At+2;Kt+2] =
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(
1− β(1− δ)

)
V AR[A;σ] > 0 (44)

By contrast, the numerator becomes negative if z is large enough. This is satisfied if:

(
V̄ + κvσi − κvzKt+1

)
− κvz

(
Kt+1 − (1− δ)Kt

)
< 0 (45)

D Data about Idiosyncratic Productivity

D.1 Model

Defining the amount of capital a firm utilizes as Ki,2, the second-period profits of a firm are

thus given by:

Ai,2(Ki,2)
α − rjKi,2. (46)

We now pin down the optimal capital choices of firms, beginning with any firm with data.

In period 1, the firm knows its realization of Ai,2 = Ā + ϵi,2 and will optimally choose its

future capital stock based on this information. We define Kd
2 (Ai,2) as the optimal capital

stock of a firm with data, which conditions on the firm’s productivity Ai,2, and is given by

Kd
2 (Ai,2) = argmax

K2

[
Ai,2(K2)

α − rdK2

]
. (47)

Now consider any firm without data. Given that any such firm does not know its future

productivity, they all face the same optimization problem. We define Knd
2 as the optimally

chosen capital stock of any firm without data. This optimal capital stock solves:

Knd
2 = argmax

K2

[ ∫ ϵ̄nd

ϵnd

(Ā+ ϵi)(K2)
αdG(ϵi)− rndK2

]
(48)

Solving the aforementioned optimization problems allows us to derive the expected capital

stock and output of the different types of firms. We define K̄nd
2 and K̄d

2 as the cross-sectional

expectation of the capital stock of a firm without and with data respectively. Further, we

define Ȳ nd
2 and Ȳ d

2 as cross-sectional expectation of the output of a firm without and with

data, respectively. Finally, we define the following moments that characterize the expected
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capital inputs and outputs of the two different types of firms, with j ∈ {d, nd}:

Ej[Ai,2] =

∫ ϵ̄j

ϵj
(Ā+ ϵi)dG

j(ϵi) ; Ej[(Ai,2)
1

1−α ] =

∫ ϵ̄j

ϵj
(Ā+ ϵi)

1
1−αdGj(ϵi). (49)

Throughout the following analysis, we place particular emphasis on the case in which ρ̃nd = ρ̃d

and Gnd = Gd, i.e., in which superior access to data only yields value by providing signals

about future productivities, but not by affecting the distribution of productivity nor the

capital costs of firms. This analysis allows us to establish that the results of the previous

section extend even if data does not favorably affect a firm’s productivity distribution, but

only enables firm to forecast their future productivity realizations.

In the following lemma, we characterize the expected capital stocks and outputs of the

different types of firms:

Lemma 2 The expected capital stock and expected output of a firm with data are given by:

K̄d
2 = (α)

1
1−α (r + ρ̃d)

1
α−1Ed

[(
Ai,2

) 1
1−α

]
; Ȳ d

2 = (α)
α

1−α (r + ρ̃d)
α

α−1Ed
[(
Ai,2

) 1
1−α

]
. (50)

The expected capital stock and expected output of a firm without data are given by:

K̄nd
2 = (α)

1
1−α (r + ρ̃nd)

1
α−1

(
End[Ai,2]

) 1
1−α ; Ȳ nd

2 = (α)
α

1−α (r + ρ̃nd)
α

α−1

(
End[Ai,2]

) 1
1−α .

(51)

If ρ̃d = ρ̃nd and Gd = Gnd, both aggregate capital and aggregate output are strictly higher in

the economy with data than in the economy without data.

This lemma underscores an important feature of the data economy: Even when it does not

favorably affect the aggregate distribution of productivity or a firm’s cost of capital, the

presence of data increases aggregate output. This holds because compared to the economy

without data, firms with below-average (above-average) productivity draws will produce less

(more) in the economy with data. Because the optimal capital demand of a firm is convex in

its productivity, the latter effect dominates and total output is increased by the availability

of data. Crucially, these results hold true even though there is no misallocation, given that

capital is supplied inelastically.

To study how access to the aforementioned type of data shapes the effects of aggregate

productivity and monetary policy shocks, we once again consider the elasticities of capital

with respect to changes in r and Ā. We say that a firm responds more strongly to a given

shock if its elasticity is larger (in absolute terms).
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D.2 Business Cycles and the Impact of Monetary Policy

In this subsection, we establish how the magnitude of cyclical fluctuations and the effective-

ness of monetary policy along the cycle are shaped by firm’s access to signals about their

future productivities. We begin by establishing that firms with and without data respond

to monetary policy shocks differentially only if their costs of capital differ:

Proposition 5 If ρ̃d = ρ̃nd, the effect of a monetary policy shock on the expected output

(capital) of firms with data equals its effect on the output (capital) of firms without data:

∂K̄d
2/∂r

K̄d
2

=
∂K̄nd

2 /∂r

K̄nd
2

;
∂Ȳ d

2 /∂r

Ȳ d
2

=
∂Ȳ nd

2 /∂r

Ȳ nd
2

. (52)

This result holds by the following logic. The magnitude of a firm’s response to a monetary

policy shock is proportional to the firm’s productivity if the firm has access to data. Impor-

tantly, the size of such a firm is also proportional to its productivity. This proportionality

implies that the relative effects of a monetary policy shock on the two types of firms are

identical, which can be seen directly when studying the closed-form solutions for aggregate

capital and output given in lemma 2.

Next, we establish how access to data shapes the responsiveness of a firm to an aggregate

productivity shock:

Proposition 6 Suppose α < 0.5. The effects of an aggregate productivity shock on the

expected output (capital) of firms without data are strictly larger:

∂K̄nd
2 /∂Ā

K̄nd
2

>
∂K̄d

2/∂Ā

K̄d
2

;
∂Ȳ nd

2 /∂Ā

Ȳ nd
2

>
∂Ȳ d

2 /∂Ā

Ȳ d
2

. (53)

Moreover, the difference Ȳ d
2 − Ȳ nd

2 decreases as Ā increases.

Given that estimates for the parameter α are commonly in the range [0.3, 0.5], this result

indicates that cyclical fluctuations will be dampened when more firms acquire data that

allows them to predict their future productivities. The intuition underlying this result is as

follows: When firms have access to data about their idiosyncratic productivities, changes in

aggregate productivity will induce smaller changes in their information sets, thereby eliciting

a smaller response.

A corollary of the previous results is that the dissemination of data not only dampens

cyclical fluctuations in general, but mitigates recessions in particular:
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Corollary 1 Suppose α < 1/2. Increasing the share of firms with access to data (ω) has a

larger effect on output in times of low aggregate productivity relative to times of high aggregate

productivity, i.e.:
∂

∂Ā

[
∂Y2

∂ω

]
< 0 (54)

Moreover, the aforementioned dynamics imply that the market shares of firms with access

to data will be countercyclical. This renders the effectiveness of monetary policy counter-

cyclical, which is formalized in the following corollary.

Corollary 2 Suppose α < 1/2 and that ρ̃d < ρ̃nd. Then, the effects of a monetary policy

shock are countercylical, i.e.:
∂

∂Ā

[
∂Y2/∂r

Y2

]
> 0. (55)

The underlying logic is as before: Firms with access to data respond comparatively weakly to

aggregate productivity shocks, which implies that they attain relatively large market shares

in recessions. These firms respond comparatively strongly to monetary policy if their costs of

capital are lower (i.e., ρ̃d < ρ̃nd), which thus implies that monetary policy becomes relatively

more effective in recessions.

Finally, it is instructive to study how the value of access to data is affected by the

prevailing macroeconomic conditions. To that end, we study the expected profits of firms

with data, which we label Π̄d, and the expected profits of firms without data, which we refer

to as Π̄nd. Note that:

Π̄d = Ed
[
Ai,2

(
Kd

2 (Ai,2)
)α − rdK

d
2 (Ai,2)

]
; Π̄nd = End

[
Ai,2

(
K̄nd

2

)α − rndK̄
nd
2

]
(56)

The difference Π̄d − Π̄nd, which is always strictly positive, can be interpreted as the value

of access to data: It represents the expected benefit a firm can attain by undertaking some

investment that grants it access to data as defined in this section. The following corollary

establishes that the value of access to data is countercyclical:

Corollary 3 Suppose ρ̃d = ρ̃nd and Gd = Gnd. If α < 1/2, the value of data is decreasing

in Ā and in r, i.e.:

∂(Π̄d − Π̄nd)

∂Ā
< 0 ;

∂(Π̄d − Π̄nd)

∂r
< 0 (57)

The intuition underlying the first result is similar to the logic surrounding proposition 6: For

a firm, having access to information about its idiosyncratic productivity component (ϵi,2) is
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more valuable when this term has a larger weight in total productivity. Increases in aggregate

productivity (Ā) reduce the weight of the idiosyncratic terms ϵi,2 in total productivity, which

implies the first result. To see why increases in the interest rate r reduce its incentives to

acquire data, note the following: The positive relationship between a firm’s idiosyncratic

productivity draw and its optimal capital input becomes less pronounced as a firm’s cost of

capital increases. This implies that the benefit of access to data, namely that a firm can

condition its capital choice on its productivity realization, falls as the interest rate increases.

E Proofs: Data about Idiosyncratic Productivity

E.1 Proof of Lemma 2

Firms without data do not know the realizations of A2 when making their capital choices.

Firms with data know their realizations of A2 when making their capital choices. The cost of

capital of any firm with data (any firm without data) is given by rd := r+ ρ̃d (rnd := r+ ρ̃nd),

respectively.

The optimization problem of a firm with data is just:

Kd
2 (A2) = argmax

K2

A2(K2)
α − rdK2 ⇐⇒ Kd

2 (A2) =
(
αA2

)1/(1−α)
(rd)

1/(α−1) (58)

The expected capital of a firm with data is

K̄d
2 =

∫ ϵ̄d

ϵd
Kd

2 (Ā+ ϵ)dGd(ϵ) (59)

Consider any firm without data. This firm maximizes the following profit function:

Knd
2 = argmax

K2

[ ∫ ϵ̄nd

ϵnd

(Ā+ ϵ)(K2)
αdGnd(ϵ)

]
− rndK2 ⇐⇒ αEnd[A2](K2)

α−1 − rnd = 0

(60)

Taking all this together, the expected capital stocks of firms with data and without data are:

K̄nd
2 =

(
End[A2]

)1/(1−α)(
α
)1/(1−α)

(rnd)
1/(α−1) (61)

K̄d
2 = Ed

[
(A2)

1/(1−α)
](
α
)1/(1−α)

(rd)
1/(α−1) (62)
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Now we determine the levels of output, beginning with the expected output of firms with

data, which is:

Ȳ d
2 =

∫ ϵ̄d

ϵd
(Ā+ ϵ)

((
αA2

)1/(1−α)
(rd)

1/(α−1)

)α

dGd(ϵ) =

(α)α/(1−α)(rd)
α/(α−1)

∫ ϵ̄d

ϵd
(Ā+ ϵ)

(
A2

)α/(1−α)
dGd(ϵ) = (α)α/(1−α)(rd)

α/(α−1)Ed
[
(A2)

1
1−α

]
(63)

Finally, the expected output of a firm without data is:

Ȳ nd
2 =

∫ ϵ̄nd

ϵnd

(Ā+ ϵ)

(
(α)1/(1−α)

(
E[A2]

)1/(1−α)
(rnd)

1/(α−1)

)α

dGnd(ϵ) =

(α)α/(1−α)(rnd)
α/(α−1)

∫ ϵ̄nd

ϵnd

(Ā+ ϵ)
(
E[A2]

)α/(1−α)
dGnd(ϵ) = (α)α/(1−α)(rnd)

α/(α−1)
(
End[A2]

)1/(1−α)

(64)

E.2 Proof of Proposition 5

The relative effect of a monetary policy shock on the expected output of firms with type

j ∈ {d, nd}:

∂Ȳ j
2 /∂r

Ȳ j
2

=
α

α− 1

1

r + ρ̃j
(65)

The result follows directly. Similar arguments imply the desired results for the expected

capital stocks.

E.3 Proof of Proposition 6

The expected outputs of firms without data and firms with data are given by:

Ȳ nd
2 = (α)

α
1−α (r + ρ̃nd)

α
α−1

(
E[Ai,2]

) 1
1−α ; Ȳ d

2 = (α)
α

1−α (r + ρ̃d)
α

α−1E
[(
Ai,2

) 1
1−α

]
. (66)

For α < 1/2, firms without data respond more strongly to aggregate productivity shocks,

i.e.:

∂Ȳ nd
2 /∂Ā

Ȳ nd
2

− ∂Ȳ d
2 /∂Ā

Ȳ d
2

> 0 (67)
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To see this, note that:

∂Ȳ nd
2

∂Ā
=

(
1

1− α

)
(α)

α
1−α (rnd)

α
α−1

(
E[Ai,2]

) α
1−α =⇒ ∂Ȳ nd/∂Ā

Ȳ nd
=

(
1

1− α

)(
E[Ai,2]

)−1
(68)

Note further that:

∂Ȳ d
2

∂Ā
=

(
1

1− α

)
(α)

α
1−α (rd)

α
α−1E

[
(Ai,2)

α/(1−α)
]
=⇒ ∂Ȳ d/∂Ā

Ȳ d
=

(
1

1− α

)
E
[
(Ai,2)

α/(1−α)
]

E
[
(Ai,2)1/(1−α)

]
(69)

By our assumption that α < 1/2, one can establish that the relative effect on firms without

data will be larger. This is because:

E
[
(Ai,2)

α/(1−α)
]
<

[
E
(
Ai,2

)]α/(1−α)
; E

[
(Ai,2)

1/(1−α)
]
>

[
E
(
Ai,2

)]1/(1−α)
(70)

This implies that:

E
[
(Ai,2)

α/(1−α)
]

E
[
(Ai,2)1/(1−α)

] <

[
E
(
Ai,2

)]α/(1−α)[
E
(
Ai,2

)]1/(1−α)
=

[
E
(
Ai,2

)]−1
(71)

E.4 Proof of Corollary 1

To see this result, note that:

Y2 = ωȲ d
2 + (1− ω)Ȳ nd

2 (72)

We have that:

∂Y2

∂ω
= Ȳ d

2 − Ȳ nd
2 > 0 (73)

Thus, previous arguments directly imply that:

∂

∂Ā

[
∂Y2

∂ω

]
=

∂Ȳ d
2

∂Ā
− ∂Ȳ nd

2

∂Ā
< 0 (74)
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E.5 Proof of Corollary 2

Consider the market share of firms with data. This is given by:

Md =
Ȳ d
2

Ȳ d
2 + Ȳ nd

2

=
1

1 +
Ȳ nd
2

Ȳ d
2

(75)

We want to show that the market share of firms with data is falling in Ā (i.e., is comparatively

low in booms and relatively high in recessions):

∂Md

∂Ā
< 0 ⇐⇒

∂
[
Ȳ nd
2 /Ȳ d

2

]
∂Ā

> 0 (76)

⇐⇒

Ȳ d
2

∂Ȳ nd
2

∂Ā
− Ȳ nd

2
∂Ȳ d

2

∂Ā

[Ȳ d
2 ]

2
> 0 ⇐⇒ ∂Ȳ nd

2 /∂Ā

Ȳ nd
2

>
∂Ȳ d

2 /∂Ā

Ȳ d
2

(77)

Because firms with data get a higher market share in recessions and are more responsive to

monetary policy shocks, this makes the effectiveness of monetary policy countercyclical.

To see this, note that the effect of a change in r on aggregate output are given by:

∂[ωȲ d
2 +(1−ω)Ȳ nd

2 ]

∂r

[ωȲ d
2 + (1− ω)Ȳ nd

2 ]
=

ω

ωȲ d
2 + (1− ω)Ȳ nd

2

∂Ȳ d
2

∂r
+

1− ω

ωȲ d
2 + (1− ω)Ȳ nd

2

∂Ȳ nd
2

∂r
=

Md∂Ȳ
d
2 /∂r

Ȳ d
2

+
(
1−Md

)∂Ȳ nd
2 /∂r

Ȳ nd
2

(78)

This depends on aggregate productivity in the following way:

∂

∂Ā

[
∂Y/∂r

Y

]
=

∂Md

∂Ā︸ ︷︷ ︸
<0

(
∂Ȳ d

2 /∂r

Ȳ d
2

− ∂Ȳ nd
2 /∂r

Ȳ nd
2︸ ︷︷ ︸

<0

)
+Md ∂

∂Ā

[
∂Ȳ d

2 /∂r

Ȳ d
2

]
+Mnd ∂

∂Ā

[
∂Ȳ nd

2 /∂r

Ȳ nd
2

]
> 0

(79)

To see that this is strictly positive (the negative effect of an increase in rt is less pronounced

if Ā is higher, since the market share of firms in the economy with data is higher), let’s

evaluate the effect of a monetary policy shock on the expected output of firms with type
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j ∈ {d, nd}:

∂Ȳ j
2 /∂r

Ȳ j
2

=
α

α− 1

1

r + ρ̃j
(80)

This is independent of Ā and the relative effect on firms with data are more substantial, i.e.:

∂Ȳ d
2 /∂r

Ȳ d
2

<
∂Ȳ nd

2 /∂r

Ȳ nd
2

⇐⇒ α

α− 1

1

r + ρ̃d
<

α

α− 1

1

r + ρ̃nd
⇐⇒ ρ̃nd > ρ̃d (81)

The latter holds by assumption.

E.6 Proof of Corollary 3

Part 1: Obtaining an expression for the value of data.

Suppose the distribution of productivity and the interest rate is the same for both types

of firms, i.e., Gd = Gnd and ρ̃d = ρ̃nd holds.

Consider the expected profits of a firm without data. These are given by:

Π̄nd =

∫ ϵ̄nd

ϵnd

(Ā+ ϵ)(K̄nd
2 )αdG(ϵ)− rK̄nd

2 (82)

Note that:

K̄nd
2 =

(
E[A2]

)1/(1−α)(
α
)1/(1−α)

(r)1/(α−1) (83)

Thus, we have:

Π̄nd = E
[
(A2)

(
E[A2]

)α/(1−α)(
α
)α/(1−α)

(r)α/(α−1)

]
−
(
E[A2]

)1/(1−α)(
α
)1/(1−α)

(r)α/(α−1) =

(
E[A2]

)1/(1−α)(
α
)α/(1−α)

(r)α/(α−1) −
(
E[A2]

)1/(1−α)(
α
)1/(1−α)

(r)α/(α−1)

⇐⇒

Π̄nd =

[(
α
)α/(1−α) −

(
α
)1/(1−α)

](
E[A2]

)1/(1−α)
(r)α/(α−1) > 0 (84)
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Now consider the expected profits of firms with data:

Π̄d =

∫ ϵ̄d

ϵd
(Ā+ ϵ)

(
Kd(Ā+ ϵ)

)α
dG(ϵ)− r

∫ ϵ̄d

ϵd
Kd(Ā+ ϵ)dG(ϵ) (85)

The capital input of any such firm is given by:

Kd(A2) =
(
αA2

)1/(1−α)
(r)1/(α−1) (86)

Plugging this in yields:

Π̄d = E
[
(A2)

(
αA2

)α/(1−α)
(r)α/(α−1) − r

(
αA2

)1/(1−α)
(r)1/(α−1)

]
=

(
α
)α/(1−α)E

[
(A2)

1/(1−α)
]
(r)α/(α−1) −

(
α
)1/(1−α)E

[
(A2)

1/(1−α)
]
(r)α/(α−1) =

[(
α
)α/(1−α) −

(
α
)1/(1−α)

]
E
[
(A2)

1/(1−α)
]
(r)α/(α−1) (87)

The difference inbetween the profits of firms with data and firms without data is thus:

Π̄d − Π̄nd =

[ (
α
)α/(1−α) −

(
α
)1/(1−α)︸ ︷︷ ︸

>0

]
(r)α/(α−1)

[
E
[
(A2)

1/(1−α)
]
−
[
E(A2)

]1/(1−α)︸ ︷︷ ︸
>0

]
(88)

Part 2: Comparative statics

The derivative of the object Π̄d − Π̄nd with respect to Ā is given by:

∂(Π̄d − Π̄nd)

∂Ā
=

[ (
α
)α/(1−α) −

(
α
)1/(1−α)︸ ︷︷ ︸

>0

](
(r)α/(α−1)

1− α

)[
E
[
(A2)

α/(1−α)
]
−

[
E(A2)

]α/(1−α)
]

(89)

Suppose α < 0.5. Then, we have α
1−α

< 1. In other words, the function in the expectations

is concave. This implies that:

E
[
(A2)

α/(1−α)
]
<

[
E(A2)

]α/(1−α) ⇐⇒ E
[
(A2)

α/(1−α)
]
−

[
E(A2)

]α/(1−α)
< 0 (90)
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This implies that:

∂(Π̄d − Π̄nd)

∂Ā
< 0 (91)

Now, we consider the effect of changes in the interest rate on the value of data. To evaluate

this, note that:

∂(Π̄d − Π̄nd)

∂r
=

[ (
α
)α/(1−α) −

(
α
)1/(1−α)︸ ︷︷ ︸

>0

][
E
[
(A2)

1/(1−α)
]
−
[
E(A2)

]1/(1−α)︸ ︷︷ ︸
>0

](
αr1/(α−1)

(α− 1)

)
(92)

The last term is strictly negative, which implies the desired result.
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